10,789 research outputs found

    Dynamics of a quantum quench in an ultra-cold atomic BCS superfluid

    Full text link
    We study dynamics of an ultra-cold atomic BCS superfluid driven towards the BCS superfluid-Fermi liquid quantum critical point by a gradual decrease of the pairing interaction. We analyze how the BCS superfluid falls out of equilibrium and show that the non-equilibrium gap and Cooper pair size reflect critical properties of the transition. We observe three stages of evolution: adiabatic where the Cooper pair size is inversely proportional to the equilibrium gap, weakly non-equilibrium where it is inversely proportional to the non-equilibrium gap, and strongly non-equilibrium where it decouples from both equilibrium and non-equilibrium gap. These phenomena should stimulate future experimental characterization of non-equilibrium ultra-cold atomic BCS superfluids.Comment: 5 pages, 3 figures, to appear in PR

    Design mobile satellite system architecture as an integral part of the cellular access digital network

    Get PDF
    The Cellular Access Digital Network (CADN) is the access vehicle through which cellular technology is brought into the mainstream of the evolving integrated telecommunications network. Beyond the integrated end-to-end digital access and per call network services provisioning of the Integrated Services Digital Network (ISDN), the CADN engenders the added capability of mobility freedom via wireless access. One key element of the CADN network architecture is the standard user to network interface that is independent of RF transmission technology. Since the Mobile Satellite System (MSS) is envisioned to not only complement but also enhance the capabilities of the terrestrial cellular telecommunications network, compatibility and interoperability between terrestrial cellular and mobile satellite systems are vitally important to provide an integrated moving telecommunications network of the future. From a network standpoint, there exist very strong commonalities between the terrestrial cellular system and the mobile satellite system. Therefore, the MSS architecture should be designed as an integral part of the CADN. This paper describes the concept of the CADN, the functional architecture of the MSS, and the user-network interface signaling protocols

    Attention focussing and anomaly detection in real-time systems monitoring

    Get PDF
    In real-time monitoring situations, more information is not necessarily better. When faced with complex emergency situations, operators can experience information overload and a compromising of their ability to react quickly and correctly. We describe an approach to focusing operator attention in real-time systems monitoring based on a set of empirical and model-based measures for determining the relative importance of sensor data

    Neutron transition strengths of 21+2^+_1 states in the neutron rich Oxygen isotopes determined from inelastic proton scattering

    Full text link
    A coupled-channel analysis of the 18,20,22^{18,20,22}O(p,p′)(p,p') data has been performed to determine the neutron transition strengths of 21+^+_1 states in Oxygen targets, using the microscopic optical potential and inelastic form factor calculated in the folding model. A complex density- and \emph{isospin} dependent version of the CDM3Y6 interaction was constructed, based on the Brueckner-Hatree-Fock calculation of nuclear matter, for the folding model input. Given an accurate isovector density dependence of the CDM3Y6 interaction, the isoscalar (δ0\delta_0) and isovector (δ1\delta_1) deformation lengths of 21+^+_1 states in 18,20,22^{18,20,22}O have been extracted from the folding model analysis of the (p,p′)(p,p') data. A specific NN-dependence of δ0\delta_0 and δ1\delta_1 has been established which can be linked to the neutron shell closure occurring at NN approaching 16. The strongest isovector deformation was found for 21+^+_1 state in 20^{20}O, with δ1\delta_1 about 2.5 times larger than δ0\delta_0, which indicates a strong core polarization by the valence neutrons in 20^{20}O. The ratios of the neutron/proton transition matrix elements (Mn/MpM_n/M_p) determined for 21+^+_1 states in 18,20^{18,20}O have been compared to those deduced from the mirror symmetry, using the measured B(E2)B(E2) values of 21+^+_1 states in the proton rich 18^{18}Ne and 20^{20}Mg nuclei, to discuss the isospin impurity in the 21+2^+_1 excitation of the A=18,T=1A=18,T=1 and A=20,T=2A=20,T=2 isobars.Comment: Version accepted for publication in Physical Review

    A Two Energy Gap Preformed-Pair Scenario For the Cuprates: Implications for Angle-Resolved Photoemission Spectroscopy

    Full text link
    We show how, within a preformed pair scenario for the cuprate pseudogap, the nodal and antinodal responses in angle resolved photoemission spectroscopy necessarily have very different temperature TT dependences. We examine the behavior and the contrasting TT dependences for a range of temperatures both below and above TcT_c. Our calculations are based on a fully microscopic TT-matrix approach for addressing pairing correlations in a regime where the attraction is stronger than BCS and the coherence length is anomalously short. Previously, the distinct nodal and anti-nodal responses have provided strong support for the "two-gap scenario" of the cuprates in which the pseudogap competes with superconductivity. Instead, our theory supports a picture in which the pseudogap derives from pairing correlations, identifying the two gap components with non-condensed and condensed pairs. It leads to reasonably good agreement with a range of different experiments in the moderately underdoped regime and we emphasize that here there is no explicit curve fitting. Ours is a microscopic rather than a phenomenological theory. We briefly address the more heavily underdoped regime in which the behavior is more complex.Comment: 12 pages; 10 figure

    Meson distribution amplitudes in holographic models

    Full text link
    We study the wave functions of light and heavy mesons in both hard-wall (HW) and soft-wall (SW) holographic models which use AdS/CFT correspondence. In the case of massless constituents, the asymptotic behaviors of the electromagnetic form factor, the distribution amplitudes, and the decay constants for the two models are the same, if the relation between the dilaton scale parameter and the size of meson is an inverse proportion. On the other hand, by introducing a quark mass dependence in the wave function, the differences of the distribution amplitudes between the two models are obvious. In addition, for the SW model, the dependences of the decay constants of meson on the dilaton scale parameter κ\kappa differ; especially f_{Qq}\sim \kappa^3/m_Q^2 is consistent with the prediction of the heavy quark effective theory if \kappa\sim m_Q^{1/2}. Thus the parameters of the two models are fit by the decay constants of the distinct mesons; the distribution amplitudes and the \xi-moments are calculated and compared.Comment: 30 pages, 11 figures, 2 tables, minor modifications and one short paragraph added, some references added and removed, accepted for publication in PR

    Comparative Study of BCS-BEC Crossover Theories above TcT_c: the Nature of the Pseudogap in Ultra-Cold Atomic Fermi Gases

    Full text link
    This paper presents a comparison of two finite-temperature BCS-Bose Einstein condensation (BEC) crossover theories above the transition temperature: Nozieres Schmitt-Rink (NSR) theory and finite TT-extended BCS-Leggett theory. The comparison is cast in the form of numerical studies of the behavior of the fermionic spectral function both theoretically and as constrained by (primarily) radio frequency (RF) experiments. Both theories include pair fluctuations and exhibit pseudogap effects, although the nature of this pseudogap is very different. The pseudogap in finite TT-extended BCS-Leggett theory is found to follow a BCS-like dispersion which, in turn, is associated with a broadened BCS-like self energy, rather more similar to what is observed in high temperature superconductors (albeit, for a d-wave case). The fermionic quasi-particle dispersion is different in NSR theory and the damping is considerably larger. We argue that the two theories are appropriate in different temperature regimes with the BCS-Leggett approach more suitable nearer to condensation. There should, in effect, be little difference at higher TT as the pseudogap becomes weaker and where the simplifying approximations used in the BCS-Leggett approach break down. On the basis of momentum-integrated radio frequency studies of unpolarized gases, it would be difficult to distinguish which theory is the better. A full comparison for polarized gases is not possible since there is claimed to be inconsistencies in the NSR approach (not found in the BCS-Leggett scheme). Future experiments along the lines of momentum resolved experiments look to be very promising in distinguishing the two theories.Comment: 16 pages, 11 figure
    • …
    corecore