29 research outputs found

    D-aspartic acid in vertebrate reproduction: Animal models and experimental designs

    Get PDF
    This article reviews the animal models and experimental designs that have been used during the past twenty years to demonstrate the prominent role played by d-aspartate (d-Asp) in the reproduction of vertebrates, from amphibians to humans. We have tabulated the findings of in vivo and in vitro experiments that demonstrate the effects of d-Asp uptake on hormone production and gametogenesis in vertebrate animal models. The contribution of each animal model to the existing knowledge on the role of d-Asp in reproductive processes has been discussed. A critical analysis of experimental designs has also been carried out. Experiments performed on wild animal species suggest a role of d-Asp in the mechanisms that regulate the reproductive cycle. Several in vivo and in vitro studies carried out on mouse and rat models have facilitated an understanding of the molecular pathways activated by D-Asp in both steroidogenesis and spermatogenesis, with particular emphasis on testosterone biosynthesis. Some attempts using d-Asp for the improvement of reproductive activity in animals of commercial interest have yielded mixed results. The increased transcriptome activity of enzymes and receptors involved in the reproductive activity in d-Asp-treated broiler roosters revealed further details on the mechanism of action of d-Asp on the reproductive processes. The close relationship between d-Asp and reproductive activity has emerged, particularly in relation to its effects exerted on semen quality, proposing therapeutic applications of this amino acid in andrology and in medically-assisted procreation techniques.This article reviews the animal models and experimental designs that have been used during the past twenty years to demonstrate the prominent role played by D-aspartate (D-Asp) in the reproduction of vertebrates, from amphibians to humans. We have tabulated the findings of in vivo and in vitro experiments that demonstrate the effects of D-Asp uptake on hormone production and gametogenesis in vertebrate animal models. The contribution of each animal model to the existing knowledge on the role of D-Asp in reproductive processes has been discussed. A critical analysis of experimental designs has also been carried out. Experiments performed on wild animal species suggest a role of D-Asp in the mechanisms that regulate the reproductive cycle. Several in vivo and in vitro studies carried out on mouse and rat models have facilitated an understanding of the molecular pathways activated by D-Asp in both steroidogenesis and spermatogenesis, with particular emphasis on testosterone biosynthesis. Some attempts using D-Asp for the improvement of reproductive activity in animals of commercial interest have yielded mixed results. The increased transcriptome activity of enzymes and receptors involved in the reproductive activity in D-Asptreated broiler roosters revealed further details on the mechanism of action of D-Asp on the reproductive processes. The close relationship between D-Asp and reproductive activity has emerged, particularly in relation to its effects exerted on semen quality, proposing therapeutic applications of this amino acid in andrology and in medically-assisted procreation techniques

    Androgen receptor in the Harderian gland of Rana esculenta

    No full text
    An androgen receptor has been identified in the cytosolic and nuclear extracts of the Harderian gland of the frog, Rana esculenta. A single class of high-affinity binding sites was found: K(d) = 1.9 ± 1.3 (S.D.) nmol/l (n = 26) for the cytosolic extract and K(d) = 0.9 ± 0.8 nmol/l (n = 15) for the nuclear extract. The presence of binding activity in both nuclear and cytosolic extracts and the low rate of ligand-receptor dissociation are characteristics that distinguish this receptor from a steroid-binding protein. The K(d) did not show any sex difference and did not exhibit any secretory activity-related change. Binding in both cytosolic and nuclear extracts was specific for androgens (testosterone = 5α-dihydrotestosterone); oestradiol-17β showed a 30% cross-reaction; moreover, specific binding of [3H]oestradiol-17β was not detectable. The binding capacity of the Harderian gland increased progressively in both fractions from October to December, reaching a peak in May, and decreased suddenly during July to August. The lack of any morphological sex-related difference in the Harderian gland of the green frog might be accounted for by the high amount of circulating androgens as well as a similar concentration of androgen receptor in both sexes

    D-Aspartate Induces Proliferative Pathways in Spermatogonial GC-1 Cells

    No full text
    D-aspartate (D-Asp) is an endogenous amino acid present in vertebrate tissues, with particularly high levels in the testis. In vivo studies indicate that D-Asp indirectly stimulates spermatogenesis through the hypothalamic-pituitary-gonadal axis. Moreover, in vitro studies have demonstrated that D-Asp up-regulates testosterone production in Leydig cells by enhancing expression of the steroidogenic acute regulatory protein. In this study, a cell line derived from immortalized type-B mouse spermatogonia retaining markers of mitotic germ cells (GC-1) was employed to explore more direct involvement of D-Asp in spermatogenesis. Activity and protein expression of markers of cell proliferation were determined at intervals during incubation in D-Asp-containing medium. D-Asp induced phosphorylation of ERK and Akt proteins, stimulated expression of PCNA and Aurora B, and enhanced mRNA synthesis and protein expression of P450 aromatase and protein expression of Estrogen Receptor β (ERβ). These results are the first demonstration of a direct effect of D-Asp on spermatogonial mitotic activity. Considering that spermatogonia express the NR1 subunit of the N-Methyl-D-Aspartic Acid receptor (NMDAR), we suggest that their response to D-Asp depends on NMDAR-mediated activation of the ERK and Akt pathways and is further enhanced by activation of the P450 aromatase/ERβ pathway

    The Aromatase–Estrogen System in the Testes of Non-Mammalian Vertebrates

    No full text
    Estrogens are important physiological regulators of testicular activity in vertebrates. Estrogen levels depend on the activity of P450 aromatase, the enzyme responsible for the irreversible conversion of testosterone into 17β-estradiol. Therefore, P450 aromatase is the key player in the aromatase–estrogen system. The present review offers a comparative overview of P450 aromatase activity in male gonads of amphibians, reptiles, and birds, with a particular emphasis on the functions of the aromatase–estrogen system in these organisms during their developmental and adult stages. The aromatase–estrogen system appears to be crucial for the sex differentiation of gonads in vertebrates. Administration of aromatase inhibitors prior to sexual differentiation of gonads results in the development of males rather than females. In adults, both aromatase and estrogen receptors are expressed in somatic cells, Leydig and Sertoli cells, as well as germ cells, with certain differences among different species. In seasonal breeding species, the aromatase–estrogen system serves as an “on/off” switch for spermatogenesis. In some amphibian and reptilian species, increased estrogen levels in post-reproductive testes are responsible for blocking spermatogenesis, whereas, in some species of birds, estrogens function synergistically with testosterone to promote spermatogenesis. Recent evidence indicates that the production of the aromatase enzyme in excessive amounts reduces the reproductive performance in avian species of commercial interest. The use of aromatase inhibitors to improve fertility has yielded suitable positive results. Therefore, it appears that the role of the aromatase–estrogen system in regulating the testicular activity differs not only among the different classes of vertebrates but also among different species within the same class

    The Harderian gland: endocrine function and hormonal control

    No full text
    The Harderian gland (HG) is an exocrine gland located within the eye socket in a variety of tetrapods. During the 1980s and 1990s the HG elicited great interest in the scientific community due to its morphological and functional complexity, and from a phylogenetic point of view. A comparative approach has contributed to a better understanding of its physiology. Whereas the chemical nature of its secretions (mucous, serous or lipids) varies between different groups of tetrapods, the lipids represent the more common component among different species. Indeed, besides being an accessory to lubricate the nictitating membrane, the lipids may have a pheromonal function. Porphyrins and melatonin secretion is a feature of the rodent HG. The porphyrins, being phototransducers, could modulate HG melatonin production. The melatonin synthesis suggests an involvement of the HG in the retinal-pineal axis. Finally, StAR protein and steroidogenic enzyme activities in the rat HG suggests that the gland contributes to steroid hormone synthesis. Over the past twenty years, much has become known on the hamster (Mesocricetus auratus) HG, unique among rodents in displaying a remarkable sexual dimorphism concerning the contents of porphyrins and melatonin. Mainly for this reason, the hamster HG has been used as a model to compare, under normal conditions, the physiological oxidative stress between females (strong) and males (moderate). Androgens are responsible for the sexual dimorphism in hamster and they are known to control the HG secretory activity in different species. Furthermore, HG is a target of pituitary, pineal and thyroid hormones. This review offers a comparative panorama of the endocrine activity of the HG as well as the hormonal control of its secretory activity, with a particular emphasis on the sex dimorphic aspects of the hamster HG

    D-amino acids in mammalian endocrine tissues

    No full text
    D-aspartate, D-serine and D-alanine are a regular occurrence in mammalian endocrine tissues, though in amounts varying with the type of gland. The pituitary gland, pineal gland, thyroid, adrenal glands and testis contain relatively large amounts of D-aspartate in all species examined. D-alanine is relatively abundant in the pituitary gland and pancreas. High levels of D-serine characterize the hypothalamus. D-leucine, D-proline and D-glutamate are generally low. The current knowledge of physiological roles of D-amino acids in endocrine tissues is far from exhaustive, yet the topic is attracting increasing interest because of its potential in pharmacological application. D-aspartate is known to act at all levels of the hypothalamus–pituitary–testis axis, playing a key role in reproductive biology in several vertebrate classes. An involvement of D-amino acids in the endocrine function of the pancreas is emerging. D-aspartate has been immunolocalized in insulin-containing secretory granules in INS-1 E clonal β cells and is co-secreted with insulin by exocytosis. Specific immunolocalization of D-alanine in pituitary ACTH-secreting cells and pancreatic β-cells suggests that this amino acid participates in blood glucose regulation in mammals. By modulating insulin secretion, D-serine probably participates in the control of systemic glucose metabolism by modulating insulin secretion. We anticipate that future investigation will significantly increase the functional repertoire of D-amino acids in homeostatic control

    D-Aspartate upregulates DAAM1 protein levels in the rat testis and induces its localization in spermatogonia nucleus.

    No full text
    Cell differentiation during spermatogenesis requires a proper actin dynamic, regulated by several proteins, including formins. Dishevelled-Associated-Activator of Morphogenesis1 (DAAM1) belongs to the formins and promotes actin polymerization. Our results showed that oral D-Aspartate (D-Asp) administration, an excitatory amino acid, increased DAAM1 protein levels in germ cells cytoplasm of rat testis. Interestingly, after the treatment, DAAM1 also localized in rat spermatogonia (SPG) and mouse GC-1 cells nuclei. We provided bioinformatic evidence that DAAM1 sequence has two predicted NLS, supporting its nuclear localization. The data suggested also a role of D-Asp in promoting DAAM1 shuttling to the nuclear compartment of those proliferative cells. In addition, the proliferative action induced by D-Asp is confirmed by the increased levels of PCNA, a protein expressed in the nucleus of cells in the S phase and p-H3, a histone crucial for chromatin condensation during mitosis and meiosis. In conclusion, we demonstrated, for the first time, an increased DAAM1 protein levels following D-Asp treatment in rat testis and also its localization in the nucleus of rat SPG and in mouse GC-1 cells. Our results suggest an assumed role for this formin as a regulator of actin dynamics in both cytoplasm and nuclei of the germ cells
    corecore