11 research outputs found

    Hyperthyroidism from autoimmune thyroiditis in a man with type 1 diabetes mellitus: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The presentation, diagnosis, clinical course and treatment of a man with hyperthyroidism secondary to autoimmune thyroiditis in the setting of type 1 diabetes mellitus has not previously been described.</p> <p>Case presentation</p> <p>A 32-year-old European-American man with an eight-year history of type 1 diabetes mellitus presented with an unintentional 22-pound weight loss but an otherwise normal physical examination. Laboratory studies revealed a suppressed thyroid-stimulating hormone concentration and an elevated thyroxine level, which are consistent with hyperthyroidism. His anti-thyroid peroxidase antibodies were positive, and his thyroid-stimulating immunoglobulin test was negative. Uptake of radioactive iodine by scanning was 0.5% at 24 hours. The patient was diagnosed with autoimmune thyroiditis. Six weeks following his initial presentation he became clinically and biochemically hypothyroid and was treated with thyroxine.</p> <p>Conclusion</p> <p>This report demonstrates that autoimmune thyroiditis presenting as hyperthyroidism can occur in a man with type 1 diabetes mellitus. Autoimmune thyroiditis may be an isolated manifestation of autoimmunity or may be part of an autoimmune polyglandular syndrome. Among patients with type 1 diabetes mellitus who present with hyperthyroidism, Graves' disease and other forms of hyperthyroidism need to be excluded as autoimmune thyroiditis can progress quickly to hypothyroidism, requiring thyroid hormone replacement therapy.</p

    Cell Walls of Saccharomyces cerevisiae Differentially Modulated Innate Immunity and Glucose Metabolism during Late Systemic Inflammation

    Get PDF
    BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS) from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic) on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK) and liver glycolysis (ENO2), and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS) down-regulation and ATP citrate lyase (ACLY) and malic enzyme (ME) up-regulations. However, MOS host's lower energy demands were sufficiently met through TCA citrate-derived energy, as indicated by CS up-regulation. CONCLUSIONS: MOS terminated inflammation earlier than VIRG and reduced glucose mobilization, thus representing a novel biological strategy to alleviate Salmonella-induced systemic inflammation in human and animal hosts

    Thyroid hormones and skeletal muscle — new insights and potential implications

    No full text
    Thyroid hormone signalling regulates crucial biological functions, including energy expenditure, thermogenesis, development and growth. The skeletal muscle is a major target of thyroid hormone signalling. The type two (DIO2) and three (DIO3) iodothyronine deiodinases have been identified in skeletal muscle. DIO2 expression is tightly regulated and catalyzes outer ring monodeiodination of the secreted prohormone tetraiodothyronine (T(4)) to generate the active hormone triiodothyronine (T(3)). T(3) may remain in the myocyte to signal through nuclear receptors or exit the cell to mix with the extracellular pool. By contrast, DIO3 inactivates T(3) through removal of an inner ring iodine. Regulation of the expression and activity of deiodinases constitutes a cell-autonomous, pre-receptor mechanism for controlling the intracellular concentration of T(3). This local control of T(3) activity is crucial during the various phases of myogenesis. Here, we review the roles of T3 in skeletal muscle development and homeostasis, with a focus on the emerging local deiodinase-mediated control of T3 signalling. Moreover, we discuss these novel findings in the context of both muscle homeostasis and pathology, and examine how they can be therapeutically harnessed to improve satellite cell-mediated muscle repair in patients with skeletal muscle disorders, muscle atrophy or injury

    Drugs and HPA axis

    No full text
    corecore