12 research outputs found

    Ten-Color flow cytometry reveals distinct patterns of expression of CD124 and CD126 by developing thymocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have developed a 12-parameter/10-color flow cytometric staining method for the simultaneous detection and characterization of 21 mouse thymocyte subpopulations that represent discreet stages of T cell development. To demonstrate the utility of this method, we assessed cytokine receptor expression on mouse thymocyte subsets. These experiments revealed distinct patterns of surface expression of receptors for the cytokines IL-4 and IL-6.</p> <p>Results</p> <p>The IL-4 receptor α chain (CD124) was highly expressed on the earliest thymocyte subsets, then downregulated prior to T cell receptor β-selection and finally upregulated in the CD4/CD8 double positive cells prior to positive selection. The IL-6 receptor α chain (CD126) showed a different pattern of expression. It was expressed on the most mature subsets within the CD4 and CD8 single positive (SP) compartments and was absent on all other thymocytes with the exception of a very small cKit<sup>-</sup>CD4<sup>-</sup>CD8<sup>- </sup>population. Intracellular staining of SP thymocytes for phosphorylated STAT-1 demonstrated that IL-6 signaling was confined to the most mature SP subsets.</p> <p>Conclusions</p> <p>This 12-parameter staining methodology uses only commercially available fluorochrome-coupled monoclonal antibodies and therefore could be employed by any investigator with access to a 4-laser flow cytometer. This novel staining scheme allowed us to easily phenotype thymocyte subpopulations that span across development, from the early thymic progenitors (ETPs) to the most mature subsets of the CD4 and CD8 single positive populations.</p

    Determination of Long-Range 13

    No full text

    Pilot Associations between Adverse Childhood Experiences, Executive Function, and Brain-Derived Neurotrophic Factor (BDNF) among Adults with Excess Adiposity

    No full text
    Adverse childhood experiences (ACEs) may predict markers of neurocognitive performance (i.e., executive function; EF) and brain health/plasticity (i.e., brain-derived neurotrophic factor; BDNF). This pilot examined: (1) ACES history and current EF performance, (2) ACEs history and current BDNF levels, and (3) current EF performance and BDNF levels. We hypothesized that higher ACEs would be associated with lower EF scores and that these patterns would be associated with serum BDNF levels. Given the pilot nature of the study, emphasis was placed on effect size vs. significance. Participants were 37 middle-aged women. Higher ACEs were not directly associated with EF scores (β = 0.08, p = 0.635) but showed potentially meaningful negative beta coefficients with proBDNF levels (β = −0.22, p = 0.200) and positive coefficients with mature BDNF (β = 0.28, p = 0.094). EF scores and proBDNF showed a positive relationship that did not reach significance (r = 0.28, p = 0.100) similar to EF scores and mature BDNF (r = 0.14, p = 0.406). In a modest pilot sample of middle-aged women with excess weight, higher ACEs were potentially associated with lower proBDNF and higher mature BDNF. Larger follow-up studies are warranted given the size of the detected coefficients and theoretical implications of ACEs and obesity as neurocognitively toxic for brain health and performance
    corecore