6,194 research outputs found

    Direct Mapping of Massive Compact Objects in Extragalactic Dark Halos

    Full text link
    A significant fraction of non-baryonic or baryonic dark matter in galactic halos may consist of MASsive Compact Objects (MASCOs) with mass M=10^{1-4}M_{sun}. Possible candidates for such compact objects include primordial black holes or remnants of primordial (Population III) stars. We propose a method for directly detecting MASCOs in extragalactic halos, using the VLBI techniques with extremely high resolution. If a galactic halo comprising a large number of MASCOs produces multiple images of a background radio-loud QSO by gravitational lensing, then a high-resolution radio map of each macro-lensed image should reveal microlensing effects by MASCOs. To assess their observational feasibility, we simulate microlensing of the radio-loud, four-image lensed QSO, B1422+231, assuming angular resolution of ~0.01 mas. MASCOs are represented by point masses. For comparison, we also simulate microlensing of B1422+231 by singular isothermal spheres. We find that the surface brightness of the macro-lensed images shows distinct spatial patterns on the scale of the Einstein radius of the perturbers. In the case of point-mass perturbers, many tiny dark spots also appear in the macro-lensed images associated with a decrease in the surface brightness toward the fringe of the original QSO image, whereas no such spots are available in the SIS models. Based on the size, position and magnified or demagnified patterns of images, we shall be able to determine the mass and density profile of a MASCO as well as its spatial distribution and abundance in a galactic halo.Comment: 4 pages, 3 figure

    Tree-ring structure of Galactic bar resonance

    Get PDF
    Galaxy models have long predicted that galactic bars slow down by losing angular momentum to their postulated dark haloes. When the bar slows down, resonance sweeps radially outwards through the galactic disc while growing in volume, thereby sequentially capturing new stars at its surface/separatrix. Since trapped stars conserve their action of libration, which measures the relative distance to the resonance centre, the order of capturing is preserved: the surface of the resonance is dominated by stars captured recently at large radius, while the core of the resonance is occupied by stars trapped early at small radius. The slow down of the bar thus results in a rising mean metallicity of trapped stars from the surface towards the centre of the resonance as the Galaxy’s metallicity declines towards large radii. This argument, when applied to Solar neighbourhood stars, allows a novel precision measurement of the bar’s current pattern speed Ωp=35.5±0.8kms−1kpc−1⁠, placing the corotation radius at RCR=6.6±0.2kpc⁠. With this pattern speed, the corotation resonance precisely fits the Hercules stream in agreement with kinematics. Beyond corroborating the slow bar theory, this measurement manifests the deceleration of the bar of more than 24 per cent since its formation and thus the angular momentum transfer to the dark halo by dynamical friction. The measurement therefore supports the existence of a standard dark-matter halo rather than alternative models of gravity

    Three-dimensional Mapping of CDM Substructure at Submillimeter Wavelengths

    Full text link
    The cold dark matter (CDM) structure formation model predicts that about 5-10 percent of a typical galactic halo of mass \sim 10^{12} \ms is in substructures with masses \lesssim 10^8 \ms. To directly detect such substructures, we propose to observe dust continuum emission from a strongly lensed QSO-host galaxy using a large submillimeter interferometer array with a high angular resolution of ∌0.01\sim 0.01arcsec such as the planned Atacama Large Submillimeter Array (ALMA). To assess their observational feasibility, we numerically simulate millilensing of an extended circular source by a CDM substructure modeled as a tidally truncated singular isothermal sphere (SIS) embedded in a typical QSO-galaxy lens system, B1422+231, modeled as a singular isothermal ellipsoid (SIE) with an external constant shear and a constant convergence. Assuming an angular resolution of 0.01arcsec, we find that the angular positions of \sim 10^8 \ms substructures at several kpc from the center of the macrolens halo can be directly measured if the size of the dust continuum emission region and the gradient of the surface brightness at the position of the perturber are sufficiently large. From the astrometric shift on a scale of a few times 10 10~mas of an image perturbed by a subhalo with respect to an unperturbed macrolensed image, we can break the degeneracy between subhalo mass and distance provided that macrolensing parameters are determined from positions and fluxes of multiple images.Comment: 7 pages, 7 EPS files. An assessment of our assumption of constancy in shear and convergence has been included. Version accepted for publication in Ap

    Quintessence, the Gravitational Constant, and Gravity

    Get PDF
    Dynamical vacuum energy or quintessence, a slowly varying and spatially inhomogeneous component of the energy density with negative pressure, is currently consistent with the observational data. One potential difficulty with the idea of quintessence is that couplings to ordinary matter should be strongly suppressed so as not to lead to observable time variations of the constants of nature. We further explore the possibility of an explicit coupling between the quintessence field and the curvature. Since such a scalar field gives rise to another gravity force of long range (\simg H^{-1}_0), the solar system experiments put a constraint on the non-minimal coupling: |\xi| \siml 10^{-2}.Comment: 9 pages, a version to be published in Phys.Rev.

    Nucleon scattering on actinides using a dispersive optical model with extended couplings

    Get PDF
    Tamura coupling model has been extended to consider the coupling of additional low-lying rotational bands to the ground state band. Rotational bands are built on vibrational bandheads (even-even targets) or single particle bandheads (odd-AA targets) including both axial and non-axial deformations. These additional excitations are introduced as a perturbation to the underlying axially-symmetric rigid rotor structure of the ground state rotational band. Coupling matrix elements of the generalized optical model are derived for extended multi-band transitions in even-even and odd-AA nuclei. Isospin symmetric formulation of the optical model is employed. A coupled-channels optical model potential (OMP) containing a dispersive contribution is used to fit simultaneously all available optical experimental databases including neutron strength functions for nucleon scattering on 232^{232}Th, 233,235,238^{233,235,238}U and 239^{239}Pu nuclei and quasi-elastic (pp,nn) scattering data on 232^{232}Th and 238^{238}U. Lane consistent OMP is derived for all actinides if corresponding multi-band coupling schemes are defined. Calculations using the derived OMP potential reproduce measured total cross-section differences between several actinide pairs within experimental uncertainty for incident neutron energies from 50 keV up to 150MeV. Multi-band coupling is stronger in even-even targets due to the collective nature of the coupling; the impact of extended coupling on predicted compound-nucleus formation cross section reaches 5% below 3 MeV of incident neutron energy. Coupling of ground-state rotational band levels in odd-AA nuclei is sufficient for a good description of the compound-nucleus formation cross sections as long as the coupling is saturated (a minimum of 7 coupled levels are typically needed).Comment: 30 pages, 4 figures, 8 tables, 3 appendice

    Predicting the optical observables for nucleon scattering on even-even actinides

    Get PDF
    Previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232^{232}Th and 238^{238}U nuclei is extended to describe scattering on even-even actinides with Z=Z=90--98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in KK quantum number) have been used to calculate coupling matrix elements of the generalized optical model. The "effective" deformations that define inter-band couplings are derived from SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential leading to additional couplings between rotational bands. Fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizs\"acker-Skyrme global mass model (WS4), allowing to use the latter to predict cross section for nuclei without experimental data. A good description of scarce "optical" experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from the one calculated with rigid-rotor potentials coupling the ground-state rotational band. Derived parameters can be used to describe both neutron and proton induced reactions.Comment: 6 pages, 4 figures, 5 table

    Brane-World Black Hole Solutions via a Confining Potential

    Full text link
    Using a confining potential, we consider spherically symmetric vacuum (static black hole) solutions in a brane-world scenario. Working with a constant curvature bulk, two interesting cases/solutions are studied. A Schwarzschild-de Sitter black hole solution similar to the standard solution in the presence of a cosmological constant is obtained which confirms the idea that an extra term in the field equations on the brane can play the role of a positive cosmological constant and may be used to account for the accelerated expansion of the universe. The other solution is one in which we can have a proper potential to explain the galaxy rotation curves without assuming the existence of dark matter and without working with new modified theories (modified Newtonian dynamics).Comment: 12 pages, to appear in PR

    Resonance sweeping by a decelerating Galactic bar

    Get PDF
    We provide the first quantitative evidence for the deceleration of the Galactic bar from local stellar kinematics in agreement with dynamical friction by a typical dark matter halo. The kinematic response of the stellar disc to a decelerating bar is studied using secular perturbation theory and test particle simulations. We show that the velocity distribution at any point in the disc affected by a naturally slowing bar is qualitatively different from that perturbed by a steadily rotating bar with the same current pattern speed Ωp and amplitude. When the bar slows down, its resonances sweep through phase space, trapping, and dragging along a portion of previously free orbits. This enhances occupation on resonances, but also changes the distribution of stars within the resonance. Due to the accumulation of orbits near the boundary of the resonance, the decelerating bar model reproduces with its corotation resonance the offset and strength of the Hercules stream in the local vR-vφ plane and the double-peaked structure of mean vR in the Lz–φ plane. At resonances other than the corotation, resonant dragging by a slowing bar is associated with a continuing increase in radial action, leading to multiple resonance ridges in the action plane as identified in the Gaia data. This work shows models using a constant bar pattern speed likely lead to qualitatively wrong conclusions. Most importantly we provide a quantitative estimate of the current slowing rate of the bar Ω˙p=(−4.5±1.4)kms−1kpc−1Gyr−1 with additional systematic uncertainty arising from unmodelled impacts of e.g. spiral arms

    Massive stars and globular cluster formation

    Full text link
    We first present chemodynamical simulations to investigate how stellar winds of massive stars influence early dynamical and chemical evolution of forming globular clusters (GCs). In our numerical models, GCs form in turbulent,high-density giant molecular clouds (GMCs), which are embedded in a massive dark matter halo at high redshifts. We show how high-density, compact stellar systems are formed from GMCs influenced both by physical processes associated with star formation and by tidal fields of their host halos. We also show that chemical pollution of GC-forming GMCs by stellar winds from massive stars can result in star-to-star abundance inhomogeneities among light elements (e.g., C, N, and O) of stars in GCs. The present model with a canonical initial mass function (IMF) also shows a C-N anticorrelation that stars with smaller [C/Fe] have larger [N/Fe] in a GC. Although these results imply that ``self-pollution'' of GC-forming GMCs by stellar winds from massive stars can cause abundance inhomogeneities of GCs, the present models with different parameters and canonical IMFs can not show N-rich stars with [N/Fe] ~ 0.8 observed in some GCs (e.g., NGC 6752). We discuss this apparent failure in the context of massive star formation preceding low-mass one within GC-forming GMCs (``bimodal star formation scenario''). We also show that although almost all stars (~97%) show normal He abundances (Y) of ~0.24 some stars later formed in GMCs can have Y as high as ~0.3 in some models. The number fraction of He-rich stars with Y >0.26 is however found to be small (~10^-3) for most models.Comment: 10 pages, 8 figures, accepted by Ap
    • 

    corecore