Tamura coupling model has been extended to consider the coupling of
additional low-lying rotational bands to the ground state band. Rotational
bands are built on vibrational bandheads (even-even targets) or single particle
bandheads (odd-A targets) including both axial and non-axial deformations.
These additional excitations are introduced as a perturbation to the underlying
axially-symmetric rigid rotor structure of the ground state rotational band.
Coupling matrix elements of the generalized optical model are derived for
extended multi-band transitions in even-even and odd-A nuclei. Isospin
symmetric formulation of the optical model is employed.
A coupled-channels optical model potential (OMP) containing a dispersive
contribution is used to fit simultaneously all available optical experimental
databases including neutron strength functions for nucleon scattering on
232Th, 233,235,238U and 239Pu nuclei and quasi-elastic (p,n)
scattering data on 232Th and 238U. Lane consistent OMP is derived for
all actinides if corresponding multi-band coupling schemes are defined.
Calculations using the derived OMP potential reproduce measured total
cross-section differences between several actinide pairs within experimental
uncertainty for incident neutron energies from 50 keV up to 150MeV. Multi-band
coupling is stronger in even-even targets due to the collective nature of the
coupling; the impact of extended coupling on predicted compound-nucleus
formation cross section reaches 5% below 3 MeV of incident neutron energy.
Coupling of ground-state rotational band levels in odd-A nuclei is sufficient
for a good description of the compound-nucleus formation cross sections as long
as the coupling is saturated (a minimum of 7 coupled levels are typically
needed).Comment: 30 pages, 4 figures, 8 tables, 3 appendice