92 research outputs found

    Regulation of Antitumor Immune Responses by the IL-12 Family Cytokines, IL-12, IL-23, and IL-27

    Get PDF
    The interleukin (IL)-12 family, which is composed of heterodimeric cytokines including IL-12, IL-23, and IL-27, is produced by antigen-presenting cells such as macrophages and dendritic cells and plays critical roles in the regulation of helper T (Th) cell differentiation. IL-12 induces IFN-γ production by NK and T cells and differentiation to Th1 cells. IL-23 induces IL-17 production by memory T cells and expands and maintains inflammatory Th17 cells. IL-27 induces the early Th1 differentiation and generation of IL-10-producing regulatory T cells. In addition, these cytokines induce distinct immune responses to tumors. IL-12 activates signal transducers and activator of transcription (STAT)4 and enhances antitumor cellular immunity through interferon (IFN)-γ production. IL-27 activates STAT1, as does IFN-γ and STAT3 as well, and enhances antitumor immunity by augmenting cellular and humoral immunities. In contrast, although exogenously overexpressed IL-23 enhances antitumor immunity via memory T cells, endogenous IL-23 promotes protumor immunity through STAT3 activation by inducing inflammatory responses including IL-17 production

    Expression Profiling without Genome Sequence Information in a Non-Model Species, Pandalid Shrimp (Pandalus latirostris), by Next-Generation Sequencing

    Get PDF
    While the study of phenotypic variation is a central theme in evolutionary biology, the genetic approaches available to understanding this variation are usually limited because of a lack of genomic information in non-model organisms. This study explored the utility of next-generation sequencing (NGS) technologies for studying phenotypic variations between 2 populations of a non-model species, the Hokkai shrimp (Pandalus latirostris; Decapoda, Pandalidae). Before we performed transcriptome analyses using NGS, we examined the genetic and phenotypic differentiation between the populations. Analyses using microsatellite DNA markers suggested that these populations genetically differed from one another and that gene flow is restricted between them. Moreover, the results of our 4-year field observations indicated that the egg traits varied genetically between the populations. Using mRNA extracted from the ovaries of 5 females in each population of Hokkai shrimp, we then performed a transcriptome analysis of the 2 populations. A total of 13.66 gigabases (Gb) of 75-bp reads was obtained. Further, 58,804 and 33,548 contigs for the first and second population, respectively, and 47,467 contigs for both populations were produced by de novo assembly. We detected 552 sequences with the former approach and 702 sequences with the later one; both sets of sequences showed greater than twofold differences in the expression levels between the 2 populations. Twenty-nine sequences were found in both approaches and were considered to be differentially expressed genes. Among them, 9 sequences showed significant similarity to functional genes. The present study showed a de novo assembly approach for the transcriptome of a non-model species using only short-read sequence data, and provides a strategy for identifying sequences showing significantly different expression levels between populations

    A Pivotal Role for Interleukin-27 in CD8+ T Cell Functions and Generation of Cytotoxic T Lymphocytes

    Get PDF
    Cytotoxic T lymphocytes (CTLs) play a critical role in the control of various cancers and infections, and therefore the molecular mechanisms of CTL generation are a critical issue in designing antitumor immunotherapy and vaccines which augment the development of functional and long-lasting memory CTLs. Interleukin (IL)-27, a member of the IL-6/IL-12 heterodimeric cytokine family, acts on naive CD4+ T cells and plays pivotal roles as a proinflammatory cytokine to promote the early initiation of type-1 helper differentiation and also as an antiinflammatory cytokine to limit the T cell hyperactivity and production of pro-inflammatory cytokines. Recent studies revealed that IL-27 plays an important role in CD8+ T cells as well. Therefore, this article reviews current understanding of the role of IL-27 in CD8+ T cell functions and generation of CTLs

    Comparison of energy metabolism in Insulin-Dependent and Non-Insulin-Dependent diabetes mellitus

    Get PDF
    To compare the metabolic consequences of insulin-dependent diabetes mellitus (IDDM) and non-insulin-dependent diabetes mellitus (NIDDM), glycemic control and energy metabolism were evaluated in 18 children displaying IDDM and 19 NIDDM adult patients. With rising concentrations of fasting blood glucose (FBG), hemoglobin A1C and free fatty acid, the percentage of the ratio of resting energy expenditure (REE) to predicted REE expressed as %REE increased and the respiratory quotient (RQ) decreased. The linear regression between RQ and FBG showed the same gradient in IDDM and NIDDM although the RQ in IDDM was always 0.07 lower than that in NIDDM given various FBG concentrations. Those patients whose RQ values were less than 0.7, indicating ketone body production, included 8 (44%) IDDM and 2 (11%) NIDDM patients. These results may explain the relatively greater manifestation of ketoacidosis in IDDM

    Integrated genetic and epigenetic analysis defines novel molecular subgroups in rhabdomyosarcoma.

    Get PDF
    横紋筋肉腫におけるゲノム・エピゲノム異常の全体図を解明 -横紋筋肉腫を4群に分類-. 京都大学プレスリリース. 2015-07-03.Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in childhood. Here we studied 60 RMSs using whole-exome/-transcriptome sequencing, copy number (CN) and DNA methylome analyses to unravel the genetic/epigenetic basis of RMS. On the basis of methylation patterns, RMS is clustered into four distinct subtypes, which exhibits remarkable correlation with mutation/CN profiles, histological phenotypes and clinical behaviours. A1 and A2 subtypes, especially A1, largely correspond to alveolar histology with frequent PAX3/7 fusions and alterations in cell cycle regulators. In contrast, mostly showing embryonal histology, both E1 and E2 subtypes are characterized by high frequency of CN alterations and/or allelic imbalances, FGFR4/RAS/AKT pathway mutations and PTEN mutations/methylation and in E2, also by p53 inactivation. Despite the better prognosis of embryonal RMS, patients in the E2 are likely to have a poor prognosis. Our results highlight the close relationships of the methylation status and gene mutations with the biological behaviour in RMS

    Genetic and clinical landscape of breast cancers with germline BRCA1/2 variants

    Get PDF
    遺伝性乳癌の遺伝学的・臨床学的特徴を解明 --BRCA1/2 変異乳癌は両アレルの不活化の有無により異なった特徴を持つ--. 京都大学プレスリリース. 2020-10-26.The genetic and clinical characteristics of breast tumors with germline variants, including their association with biallelic inactivation through loss-of-heterozygosity (LOH) and second somatic mutations, remain elusive. We analyzed germline variants of 11 breast cancer susceptibility genes for 1, 995 Japanese breast cancer patients, and identified 101 (5.1%) pathogenic variants, including 62 BRCA2 and 15 BRCA1 mutations. Genetic analysis of 64 BRCA1/2-mutated tumors including TCGA dataset tumors, revealed an association of biallelic inactivation with more extensive deletions, copy neutral LOH, gain with LOH and younger onset. Strikingly, TP53 and RB1 mutations were frequently observed in BRCA1- (94%) and BRCA2- (9.7%) mutated tumors with biallelic inactivation. Inactivation of TP53 and RB1 together with BRCA1 and BRCA2, respectively, involved LOH of chromosomes 17 and 13. Notably, BRCA1/2 tumors without biallelic inactivation were indistinguishable from those without germline variants. Our study highlights the heterogeneity and unique clonal selection pattern in breast cancers with germline variants

    Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia

    Get PDF
    Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML
    corecore