127 research outputs found

    Hemodynamics of Stent Implantation Procedures in Coronary Bifurcations: an in vitro study

    Get PDF
    Stent implantation in coronary bifurcations presents unique challenges and currently there is no universally accepted stent deployment approach. Despite clinical and computational studies, to date, the effect of each stent implantation method on the coronary artery hemodynamics is not well understood. In this study the hemodynamics of stented coronary bifurcations under pulsatile flow conditions were investigated experimentally. Three implantation methods, provisional side branch (PSB), culotte (CUL), and crush (CRU), were investigated using time-resolved particle image velocimetry (PIV) to measure the velocity fields. Subsequently, hemodynamic parameters including wall shear stress (WSS), oscillatory shear index (OSI), and relative residence time (RRT) were calculated and the pressure field through the vessel was non-invasively quantified. The effects of each stented case were evaluated and compared against an un-stented case. CRU provided the lowest compliance mismatch, but demonstrated detrimental stent interactions. PSB, the clinically preferred method, and CUL maintained many normal flow conditions. However, PSB provided about a 300% increase in both OSI and RRT. CUL yielded a 10% and 85% increase in OSI and RRT, respectively. The results of this study support the concept that different bifurcation stenting techniques result in hemodynamic environments that deviate from that of un-stented bifurcations, to varying degrees.Comment: 33 pages, 8 figures, 3 table

    Optimal Site for Proximal Optimization Technique in Complex Coronary Bifurcation Stenting: A Computational Fluid Dynamics Study

    Get PDF
    Background/purpose: The optimal position of the balloon distal radio-opaque marker during the post optimization technique (POT) remains debated. We analyzed three potential different balloon positions for the final POT in two different two-stenting techniques, to compare the hemodynamic effects in terms of wall shear stress (WSS) in patients with complex left main (LM) coronary bifurcation. Methods/materials: We reconstructed the patient-specific coronary bifurcation anatomy using the coronary computed tomography angiography (CCTA) data of 8 consecutive patients (6 males, mean age 68.2± 18.6 years) affected by complex LM bifurcation disease. Subsequently a virtual bench test was performed in each patient using two different double stenting techniques represented by the DK and Nano crush using the reconstruction of Orsiro stents (Biotronik IC, Bulack, Switzerland). Results: A significant reduction in the mean WSS values in all the lesion's sites was observed when the final POT was performed 1 mm distally the carina cut plane in both techniques. Moreover, a significant improvement in the mean WSS values of the entire SB (e.g. LCX) was obtained performing the POT 1 mm distally to the carina cut plane. The proximal POT resulted in larger area of lower WSS values at the carina using both the Nano crush and the DK crush techniques. Conclusions: In patients with complex LM bifurcation disease the use of a final POT performed 1 mm distally to the carina cut plane might results in more favorable WSS patterns (i.e. higher WSS values) along all stented segments and, especially, along the entire LCX lesions

    Biomechanical Evaluation of Different Balloon Positions for Proximal Optimization Technique in Left Main Bifurcation Stenting

    Get PDF
    Background: Proximal optimization technique (POT) is a key step during left main (LM) bifurcation stenting. However, after crossover stenting, the ideal position of POT balloon is unclear. We sought to evaluate the biomechanical impact of different POT balloon positions during LM cross-over stenting procedure. Methods: We reconstructed the patient-specific LM bifurcation anatomy, using coronary computed tomography angiography data of 5 consecutive patients (3 males, mean age 66.3 ± 21.6 years) with complex LM bifurcation disease, defined as Medina 1,1,1, evaluated between 1st January 2018 to 1st June 2018 at our center. Finite element analyses were carried out to virtually perform the stenting procedure. POT was virtually performed in a mid (marker just at the carina cut plane), proximal (distal marker 1 mm before the carina) and distal (distal marker 1 mm after the carina) position in each investigated case. Final left circumflex obstruction (SBO%), strut malapposition, elliptical ratio and stent malapposition were evaluated. Results: The use of both proximal and distal POT resulted in a smaller LM diameter compared to the mid POT. SBO was significantly higher in both proximal and distal configurations compared to mid POT: 38.3 ± 5.1 and 29.3 ± 3.1 versus 18.3 ± 3.6%, respectively. Similarly stent malapposition was higher in both proximal and distal configurations compared to mid POT: 1.3 ± 0.4 and 0.82 ± 1.8 versus 0.78 ± 1.2, respectively. Conclusions: Mid POT offers the best results in terms of LCx opening maintaining slightly smaller but still acceptable LM and LAD diameters compared to alternative POT configuration

    3D modelling of drug-coated balloons for the treatment of calcified superficial femoral arteries

    Get PDF
    Background/Objectives Drug-coated balloon therapy for diseased superficial femoral arteries remains controversial. Despite its clinical relevance, only a few computational studies based on simplistic two-dimensional models have been proposed to investigate this endovascular therapy to date. This work addresses the aforementioned limitation by analyzing the drug transport and kinetics occurring during drug-coated balloon deployment in a three-dimensional geometry. Methods An idealized three-dimensional model of a superficial femoral artery presenting with a calcific plaque and treated with a drug-coated balloon was created to perform transient mass transport simulations. To account for the transport of drug (i.e. paclitaxel) released by the device, a diffusion-reaction equation was implemented by describing the drug bound to specific intracellular receptors through a non-linear, reversible reaction. The following features concerning procedural aspects, pathologies and modelling assumptions were investigated: (i) balloon application time (60–180 seconds); (ii) vessel wall composition (healthy vs. calcified wall); (iii) sequential balloon application; and (iv) drug wash-out by the blood stream vs. coating retention, modeled as exponential decay. Results The balloon inflation time impacted both the free and specifically-bound drug concentrations in the vessel wall. The vessel wall composition highly affected the drug concentrations. In particular, the specifically-bound drug concentration was four orders of magnitude lower in the calcific compared with healthy vessel wall portions, primarily as a result of reduced drug diffusion. The sequential application of two drug-coated balloons led to modest differences (~15%) in drug concentration immediately after inflation, which became negligible within 10 minutes. The retention of the balloon coating increased the drug concentration in the vessel wall fourfold. Conclusions The overall findings suggest that paclitaxel kinetics may be affected not only by the geometrical and compositional features of the vessel treated with the drug-coated balloon, but also by balloon design characteristics and procedural aspects that should be carefully considered

    Does the shape of inflow velocity profiles affect hemodynamics in computational coronary artery models?

    Get PDF
    In this study, the impact of velocity inflow profiles shape on computational hemodynamic models of coronary arteries was investigated. To this purpose, 3D realistic velocity profiles were generated analytically and prescribed as inflow boundary condition and the impact on near-wall and intravascular flow was assessed. The results suggest that the impact of the shape of inflow velocity profiles on simulated coronary hemodynamics is limited to the proximal segment, while the global hemodynamics is poorly affected

    An agent-based model of cardiac allograft vasculopathy: toward a better understanding of chronic rejection dynamics

    Get PDF
    Cardiac allograft vasculopathy (CAV) is a coronary artery disease affecting 50% of heart transplant (HTx) recipients, and it is the major cause of graft loss. CAV is driven by the interplay of immunological and non-immunological factors, setting off a cascade of events promoting endothelial damage and vascular dysfunction. The etiology and evolution of tissue pathology are largely unknown, making disease management challenging. So far, in vivo models, mostly mouse-based, have been widely used to study CAV, but they are resource-consuming, pose many ethical issues, and allow limited investigation of time points and important biomechanical measurements. Recently, agent-based models (ABMs) proved to be valid computational tools for deciphering mechanobiological mechanisms driving vascular adaptation processes at the cell/tissue level, augmenting cost-effective in vivo lab-based experiments, at the same time guaranteeing richness in observation time points and low consumption of resources. We hypothesize that integrating ABMs with lab-based experiments can aid in vivo research by overcoming those limitations. Accordingly, this work proposes a bidimensional ABM of CAV in a mouse coronary artery cross-section, simulating the arterial wall response to two distinct stimuli: inflammation and hemodynamic disturbances, the latter considered in terms of low wall shear stress (WSS). These stimuli trigger i) inflammatory cell activation and ii) exacerbated vascular cell activities. Moreover, an extensive analysis was performed to investigate the ABM sensitivity to the driving parameters and inputs and gain insights into the ABM working mechanisms. The ABM was able to effectively replicate a 4-week CAV initiation and progression, characterized by lumen area decrease due to progressive intimal thickening in regions exposed to high inflammation and low WSS. Moreover, the parameter and input sensitivity analysis highlighted that the inflammatory-related events rather than the WSS predominantly drive CAV, corroborating the inflammatory nature of the vasculopathy. The proof-of-concept model proposed herein demonstrated its potential in deepening the pathology knowledge and supporting the in vivo analysis of CAV

    Impact of lower limb movement on the hemodynamics of femoropopliteal arteries: A computational study

    Get PDF
    Femoropopliteal arteries (FPAs) are subjected to a wide range of deformations, mainly determined by leg movement. FPAs are often affected by atherosclerotic plaque development, presumably influenced by the biomechanics of surrounding tissues. Although abnormal hemodynamics in FPAs appears to be an important factor in driving plaque development, to date it has been investigated in few studies, in which the leg was modeled in either fixed straight or bent configuration. Hence, the current work investigates the impact of leg movement on FPA hemodynamics. An idealized model of FPA was created to perform moving-boundary computational fluid dynamics analyses. By mimicking hip rotation, knee flexion and complete movement of walking, the hemodynamics was compared between moving- and fixed-boundary models. Moreover, additional features affecting the hemodynamics (e.g. flow-rate curve amplitude, walking speed) were examined. Significant hemodynamic differences were found between the moving- and fixed-boundary models, with the leg movement inducing higher time-averaged wall shear stress (TAWSS) (up to 66%). The flow-rate amplitude and walking period were the most influential parameters (differences in TAWSS up to 68% and 74%, respectively). In conclusion, this numerical approach highlighted the importance of considering leg movement to investigate FPA hemodynamics, and it could be employed in future patient-specific analyses
    • …
    corecore