4 research outputs found

    NFATc1 induction by an intronic enhancer restricts NKT γδ cell formation

    Get PDF
    In thymus, the ablation of T cell receptor (TCR)-activated transcription factor NFATc1 or its inducible isoforms during the double-negative (DN) stages of thymocyte development leads to a marked increase in γδ thymocytes whereas the development of αβ thymocytes remains mostly unaffected. These γδ thymocytes are characterized by the upregulation of the promyelocytic leukemia zinc-finger factor (PLZF), the "master regulator" of natural killer T (NKT) cell development, and the acquisition of an NKT γδ cell phenotype with higher cell survival rates. The suppressive function of NFATc1 in NKT γδ cell formation critically depends on the remote enhancer E2, which is essential for the inducible expression of NFATc1 directed by its distal promoter P1. Thus, the enhancer deciphers a strong γδ TCR signal into the expression of inducible NFATc1 isoforms resulting in high levels of NFATc1 protein that are essential to control the numbers of NKT γδ cells

    A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction.

    No full text
    Nm23-H1 is a metastasis suppressor gene whose overexpression is associated with both reduced cell motility in various cancers and increased metastatic potential in neuroblastomas, osteosarcomas, and hematological malignances. We previously reported that Nm23-H1 exerts tumor suppressor action in prostate cancer cells and that h-Prune, which is overexpressed in various tumor types, binds Nm23-H1. Moreover, blockage of the Nm23-H1/h-Prune interaction with a competitive permeable peptide (CPP) attenuates migration of breast and neuroblastoma cells. This series of events suggests that the Nm23-H1/h-Prune protein complex regulates cancer progression and that its specific impairment could be a new therapeutic strategy in oncology. We found that CPP leads to inhibition of the AKT/mTORv and NF-kBv signaling pathways and also activates apoptosis. To obtain a proof-of-concept of our hypothesis, we used a xenograft model of prostate cancer to evaluate whether impairment of this complex using CPP results in an anti-tumoral effect. Using a mouse orthotopic model with bioluminescent imaging, we show evidences that CPP reduces prostate cancer metastases formation. In conclusion, CPP being able to impair formation of the h-Prune/Nm23-H1 complex holds promise for the treatment of prostate cancer

    Prune-1 drives polarization of tumor-associated macrophages (TAMs) within the lung metastatic niche in triple-negative breast cancer

    No full text
    M2-tumor-associated macrophages (M2-TAMs) in the tumor microenvironment represent a prognostic indicator for poor outcome in triple-negative breast cancer (TNBC). Here we show that Prune-1 overexpression in human TNBC patients has positive correlation to lung metastasis and infiltrating M2-TAMs. Thus, we demonstrate that Prune-1 promotes lung metastasis in a genetically engineered mouse model of metastatic TNBC augmenting M2-polarization of TAMs within the tumor microenvironment. Thus, this occurs through TGF-beta enhancement, IL-17F secretion, and extracellular vesicle protein content modulation. We also find murine inactivating gene variants in human TNBC patient cohorts that are involved in activation of the innate immune response, cell adhesion, apoptotic pathways, and DNA repair. Altogether, we indicate that the overexpression of Prune-1, IL-10, COL4A1, ILR1, and PDGFB, together with inactivating mutations of PDE9A, CD244, Sirpblb, SV140, lqcal, and PIP5K1B genes, might represent a route of metastatic lung dissemination that need future prognostic validations
    corecore