733 research outputs found

    Blazar Flaring Patterns (B-FlaP): Classifying Blazar Candidates of Uncertain type in the third Fermi-LAT catalog by Artificial Neural Networks

    Get PDF
    The Fermi Large Area Telescope (LAT) is currently the most important facility for investigating the GeV γ\gamma-ray sky. With Fermi LAT more than three thousand γ\gamma-ray sources have been discovered so far. 1144 (40%\sim40\%) of the sources are active galaxies of the blazar class, and 573 (20%\sim20\%) are listed as Blazar Candidate of Uncertain type (BCU), or sources without a conclusive classification. We use the Empirical Cumulative Distribution Functions (ECDF) and the Artificial Neural Networks (ANN) for a fast method of screening and classification for BCUs based on data collected at γ\gamma-ray energies only, when rigorous multiwavelength analysis is not available. Based on our method, we classify 342 BCUs as BL Lacs and 154 as FSRQs, while 77 objects remain uncertain. Moreover, radio analysis and direct observations in ground-based optical observatories are used as counterparts to the statistical classifications to validate the method. This approach is of interest because of the increasing number of unclassified sources in Fermi catalogs and because blazars and in particular their subclass High Synchrotron Peak (HSP) objects are the main targets of atmospheric Cherenkov telescopes.Comment: 18 pages, 17 figures, accepted for publication on MNRA

    Planar Superconducting Resonators with Internal Quality Factors above One Million

    Full text link
    We describe the fabrication and measurement of microwave coplanar waveguide resonators with internal quality factors above 10 million at high microwave powers and over 1 million at low powers, with the best low power results approaching 2 million, corresponding to ~1 photon in the resonator. These quality factors are achieved by controllably producing very smooth and clean interfaces between the resonators' aluminum metallization and the underlying single crystal sapphire substrate. Additionally, we describe a method for analyzing the resonator microwave response, with which we can directly determine the internal quality factor and frequency of a resonator embedded in an imperfect measurement circuit.Comment: 4 pages, 3 figures, 1 tabl

    Excitation of superconducting qubits from hot non-equilibrium quasiparticles

    Full text link
    Superconducting qubits probe environmental defects such as non-equilibrium quasiparticles, an important source of decoherence. We show that "hot" non-equilibrium quasiparticles, with energies above the superconducting gap, affect qubits differently from quasiparticles at the gap, implying qubits can probe the dynamic quasiparticle energy distribution. For hot quasiparticles, we predict a non-neligable increase in the qubit excited state probability P_e. By injecting hot quasiparticles into a qubit, we experimentally measure an increase of P_e in semi-quantitative agreement with the model and rule out the typically assumed thermal distribution.Comment: Main paper: 5 pages, 5 figures. Supplement: 1 page, 1 figure, 1 table. Updated to user-prepared accepted version. Key changes: Supplement added, Introduction rewritten, Figs.2,3,5 revised, Fig.4 adde
    corecore