2,618 research outputs found

    Growth Trajectory and Adult Height in Children with Nonclassical Congenital Adrenal Hyperplasia

    Get PDF
    Background: Children with nonclassical congenital adrenal hyperplasia (NCCAH) often present increased growth velocity secondary to elevation of adrenal androgens that accelerates bone maturation and might compromise adult height (AH). Objective: The aim of the study was to analyze prognostic factors affecting growth trajectory (GT) and AH in children with NCCAH. Methods: The study was a retrospective, multicentric study. The study population consisted of 192 children with a confirmed molecular diagnosis of NCCAH, followed by pediatric endocrinology centers from diagnosis up to AH. Clinical records were collected and analyzed. AH (standard deviation score; SDS), pubertal growth (PG) (cm), GT from diagnosis to AH (SDS), and AH adjusted to target height (TH) (AH-TH SDS) were evaluated as outcome indicators using stepwise linear regression models. Results: The stepwise linear regression analysis showed that AH and AH-TH were significantly related to chronological age (CA) (p = 0.008 and 0.016), bone age (BA)/CA ratio (p = 0.004 and 0.001), height (H) (p < 0.001 for both parameters) at NCCAH diagnosis, and TH (p = 0.013 and <0.001). PG was higher in males than in females (22.59 ± 5.74 vs. 20.72 ± 17.4 cm, p = 0.002), as physiologically observed, and was positively related to height (p = 0.027), negatively to BMI (p = 0.001) and BA/CA ratio (p = 0.001) at NCCAH diagnosis. Gender, genotype, biochemical data, and hydrocortisone treatment did not significantly impair height outcomes of these NCCAH children. Conclusions: The results of this study suggest that AH and GT of NCCAH patients are mainly affected by the severity of phenotype (CA, BA/CA ratio, and H) at the time of diagnosis. © 2020 S. Karger AG. All rights reserved

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore