21 research outputs found

    Chromosome characterization and variability in some Iridaceae from Northeastern Brazil

    Get PDF
    The chromosomes of 15 species of Iridaceae of the genera Alophia, Cipura, Eleutherine, Neomarica and Trimezia (subfamily Iridoideae) were examined after conventional Giemsa staining. The karyotypes of Alophia drummondii (2n = 14+1B, 28, 42 and 56), Cipura paludosa (2n = 14), C. xanthomelas (2n = 28) and Eleutherine bulbosa (2n = 12) were asymmetric; Neomarica candida, N. caerulea, N. humilis, N. glauca, N. gracilis, N. northiana and Neomarica sp. (2n = 18); N. cf. paradoxa (2n = 28), Trimezia fosteriana (2n = 52), T. martinicensis (2n = 54) and T. connata (2n = 82) were all generally symmetric. New diploid numbers of 2n = 56 for Alophia drummondii, 2n = 18 for N. candida, N. humilis, N. glauca, and N. gracilis, 2n = 28 for N. cf. paradoxa, and 2n = 82 for T. connata are reported. The karyotypic evolution of the studied species is discussed

    IAPT/IOPB chromosome data 25 [extended online version]

    No full text
    IAPT/IOPB chromosome data 25This article is from the OpenAccess part of the journal. This is an open access article, available to all readers online, published under a creative commons licensing (https://creativecommons.org/licenses/by/4.0/). The attached file is the published version of the article

    Evolutionary convergence or homology? Comparative cytogenomics of Caesalpinia group species (Leguminosae) reveals diversification in the pericentromeric heterochromatic composition

    No full text
    The Caesalpinia Group includes 225 species and 27 monophyletic genera of which four occur in Northeastern Brazil: Erythrostemon (1 sp.), Cenostigma (7 spp.), Libidibia (1 sp.), and Paubrasilia (1 sp.). The last three genera are placed in different clades in the Caesalpinia Group phylogeny, and yet they are characterized by having a numerically stable karyotype 2n = 24 (16 M+8A) and GC-rich heterochromatic bands (chromomycin A3 positive/CMA+ bands) in the proximal chromosome regions. To characterize the composition of their heterochromatin and test for the homology of these chromosomal regions, genomic DNA was extracted from Cenostigma microphyllum, Libidibia ferrea, and Paubrasilia echinata, and sequenced at low coverage using the Illumina platform. The genomic repetitive fractions were characterized using a Galaxy/RepeatExplorer-Elixir platform. The most abundant elements of each genome were chromosomally located by fluorescent in situ hybridization (FISH) and compared to the CMA+ heterochromatin distribution. The repetitive fraction of the genomes of C. microphyllum, L. ferrea, and P. echinata were estimated to be 41.70%, 38.44%, and 72.51%, respectively. Ty3/Gypsy retrotransposons (RT), specifically the Tekay lineage, were the most abundant repeats in each of the three genomes. FISH mapping revealed species-specific patterns for the Tekay elements in the proximal regions of the chromosomes, co-localized with CMA+ bands. Other species-specific patterns were observed, e.g., for the Ty3/Gypsy RT Athila elements which were found in all the proximal heterochromatin of L. ferrea or restricted to the acrocentric chromosomes of C. microphyllum. This Athila labeling co-localized with satellite DNAs (satDNAs). Although the Caesalpinia Group diverged around 55 Mya, our results suggest an ancestral colonization of Tekay RT in the proximal heterochromatin. Thus, the present-day composition of the pericentromeric heterochromatin in these Northeast Brazilian species is a combination of the maintenance of an ancestral Tekay distribution with a species-specific accumulation of other repeats
    corecore