25 research outputs found

    I reservoir carbonatici nello stoccaggio geologico dell'anidride carbonica: modellazione e caratterizzazione

    Get PDF
    L’attuale processo di riscaldamento globale, guidato dalla costante e crescente emissione di gas serra, come l’anidride carbonica e il metano, è uno dei temi più discussi sia in ambito scientifico, sia a livello governativo. In questi anni, gli studi condotti mediante la cooperazione tra Università, centri di ricerca, servizi geologici e compagnie petrolifere sulla cattura e stoccaggio dell’anidride carbonica (CCS) hanno ottenuto risultati incoraggianti, che mettono in evidenza il fatto che, sebbene il CCS sia un processo complesso, esso rappresenta probabilmente l’unica soluzione rilevante per ridurre le emissioni di gas serra in atmosfera nel breve termine, considerando sia i costi che la tecnologia disponibile. Già nel 2005, l’IPCC identificava lo stoccaggio di CO2 come una delle tecnologie capaci di mitigare il cambiamento climatico (EPA, 2010). La tecnologia CCS consiste nella cattura dell’anidride carbonica da impianti industriali e/o di produzione di energia elettrica e nel conseguente trasporto e stoccaggio in formazioni geologiche profonde. La CO2 rimane intrappolata per un lungo periodo di tempo a causa di processi fisici e geochimici che avvengono all’interno della formazione. Nei principali siti industriali, come Sleipner, ma anche in quelli pilota, l’anidride carbonica viene solitamente iniettata in reservoir costituiti da rocce porose, come arenarie, con un caprock di tipo argilloso. La scelta di questo tipo di roccia-serbatoio è dettata principalmente dalla facilità di selezione del sito e da criteri di capacità di stoccaggio, nonché da criteri economici. D’altra parte, però, esistono anche i reservoir carbonatici fratturati, ben noti in campo petrolifero, ma il cui utilizzo ai fini dello stoccaggio di CO2 è ancora limitato. Infatti, essi sono caratterizzati da una disomogeneità nella distribuzione della porosità e permeabilità, legata alla presenza di faglie e/o fratture. Inoltre, nelle rocce carbonatiche vi è anche la difficoltà di prevedere i processi geochimici legati all’interazione dell’anidride carbonica con la roccia stessa. Nonostante le difficoltà che possono incorrere durante la fase di selezione e caratterizzazione del sito, l’utilizzo di questi reservoir consentirebbe di aumentare la capacità volumetrica di stoccaggio a livello globale. Esempi di questi tipi di reservoir sono riconoscibili anche in Italia, in diversi scenari geologico-strutturali. Infatti, nell’avanfossa adriatica sono state identificate diverse strutture della Piattaforma apula sepolte al di sotto della coltre silico-clastica plio-pleistocenica, spesso sede di reservoir a gas e/o ad olio, ben studiate dall’industria petrolifera e che attualmente potrebbero essere oggetto di un potenziale sito CCS. Oltre alla fascia periadritica, di notevole interesse risulta essere anche il bacino del Sulcis in Sardegna, nel quale la successione paleozoica è sovrastata da quella cenozoica, costituita da calcari e letti di carbone (sfruttati nella miniera di Nuraxi Figus). La posizione strategica e le caratteristiche geologiche del sito lo rendono ideale per lo sviluppo del primo impianto di cattura e stoccaggio di anidride carbonica in Italia. La caratterizzazione di un reservoir carbonatico fratturato passa attraverso un’accurata definizione delle caratteristiche petro-fisiche e geomeccaniche dei carbonati, l’individuazione di lineamenti tettonici sia in profondità, che in affioramento, la valutazione del tipo di copertura del reservoir e valutazione della possibilità di leakage di CO2 dal reservoir attraverso l’individuazione delle vie di migrazione preferenziali dei gas. Poiché la caratterizzazione di un reservoir è un processo complesso, spesso è essenziale utilizzare degli analoghi naturali, ovvero di sistemi che presentano delle caratteristiche geologiche del tutto simili a quelle che ci si aspetta di trovare nel sottosuolo. In questo lavoro, ci si propone di elaborare dei modelli geologici di reservoir carbonatici, mediante l’interpretazione di dati sismici, e di attribuire a ciascuno di essi una densità di fratturazione, in modo da ricreare un Discrete Fracture Network. I modelli verranno poi integrati con i dati derivanti dal rilevamento geologico-strutturale e dalla prospezione geochimica dei gas del suolo, per individuare aree a maggiore circolazione dei fluidi, che potrebbero causare una perdita dal reservoir. I modelli realizzati si riferiscono al Bacino del Sulcis, a quello di Vasto e al cosiddetto “Bacino di Forenza”. In questo lavoro sono stati messi a confronti tre reservoir potenziali per lo stoccaggio di anidride carbonica, ubicati in scenari geologici differenti e aventi caratteristiche litologiche differenti. Nonostante la caratterizzazione di reservoir carbonatici fratturati sia complessa, la misura di numerosi parametri in campagna su analoghi naturali permette di riconoscere delle caratteristiche petro-fisiche e geomeccaniche utili alla valutazione del volume disponibile per lo stoccaggio. Inoltre, la correlazione con i dati geochimici permette di identificare i fattori di rischio legate al potenziale leakage di CO2 dal reservoir attraverso vie di fuga preferenziale. Quindi, l’associazione di un rilevamento geologico-strutturale di dettaglio con una prospezione dei gas del suolo areale risulta essere uno strumento efficace per la valutazione dei rischi connessi alle attività di stoccaggio, e di prevenire eventuali incidenti futuri

    On-going and future research at the Sulcis site in Sardinia, Italy. Characterization and experimentation at a possible future CCS pilot

    Get PDF
    National Italian funding has recently been allocated for the construction of a 350 MWe coal-fired power plant / CCS demonstration plant in the Sulcis area of SW Sardinia, Italy. In addition, the recently approved EC-funded ENOS project (ENabling Onshore CO2 Storage in Europe) will use the Sulcis site as one of its main field research laboratories. Site characterization is already ongoing, and work has begun to design gas injection experiments at 100-200 m depth in a fault. This article gives an overview of results to date and plans for the future from the Sapienza University of Rome research group

    Making the Communication of CCS more "human"

    Get PDF
    CCS communication has proven a tough challenge, particularly for the difficulty in raising interest for the technology, which is still unknown to the majority of the population, and for the complexity of conveying information about its potential for reducing emissions. In this paper we present a research based effort for bringing CCS nearer to people, through visual material developed taking into account emotional needs related to the technology. The production of a short introductory film on CCS is illustrated and its testing with a sample of 700 high school students

    Preliminary results of geological characterization and geochemical monitoring of Sulcis Basin (Sardinia), as a potential CCS site

    Get PDF
    The Sulcis Basin is an area situated in SW Sardinia (Italy) and is a potential site for the development of CCS in Italy. This paper illustrates the preliminary results of geological characterization of fractured carbonate reservoir (Miliolitico Fm.) and the sealing sequence, composed by clay, marl and volcanic rocks, with a total thickness of more than 900 m. To characterize the reservoircaprock system an extensive structural-geological survey at the outcrop was conducted. It was also performed a study of the geochemical monitoring, to define the baseline conditions, measuring CO2 concentrations and flux in the study site

    Relationships between geogenic radon potential and gamma ray maps with indoor radon levels at Caprarola municipality (central Italy)

    Get PDF
    Exposures to relatively high indoor radon (222Rn) levels represents a serious public health risk because Rn is associated with lung cancer (Darby et al., 2001; WHO, 2009; Oh et al., 2016; Sheen et al., 2016). The risk is high because radon, and its short-lived decay products in the atmosphere, contributes for about 60% of the total annual effective dose (UNSCEAR, 2000; WHO, 2009). Cancer risk is increased by smoking being almost 9 times higher than the risk to non-smokers exposed to similar levels (EPA, 2009). Due to these reasons, it is very important to assess the indoor exposure of public to radon and their daughters. Rn is a natural ubiquitous gas and its abundance is mainly controlled by the geology, and in particular by the soil and rock content of its parent nuclide (238U). Furthermore, bedrock characteristics (i.e. permeability and porosity) and also fault activity can affect the amount of Rn released in the ground (Ciotoli et al., 2007; Barnet et al., 2018). As such, in conditions of permeable and/or fractured bedrock and high uranium content, high indoor radon concentrations are expected (Bossew and Lettner, 2007; Gruber et al., 2013; Cinelli et al., 2015; Ielsch et al., 2017; Ciotoli et al., 2017). A non-natural contribution that controls the indoor Rn levels is home construction type and building materials (Vauptic et al., 2002; Appleton, 2007). Additionally, meteorological factors, such as wind, temperature and humidity, can affect the rate of Rn entry into the buildings (Porstendörfer et al., 1994; Miles et al., 2005; Schubert et al., 2018). In this work, we propose a new geospatial technique to construct the geogenic radon potential (GRP) map of the Caprarola municipality (northern Lazio, central Italy) characterized by recent (about 100 Kyr) volcanic deposits with high content in radon parent nuclides (Ciotoli et al., 2017). GRP map has been obtained by using Empirical Bayesian Kriging Regression (EBKR) technique with soil gas radon, as the response variable, and a number of proxy variables (i.e. content of the radiogenic parent nuclides, the emanation coefficient of the outcropping rocks, the diffusive 222Rn flux from the soil, the soil-gas CO2 concentration, the Digital Terrain Model (DTM), the permeability of the outcropping rocks and the gamma dose radiation of the shallow lithology. Furthermore, possible relationships between predicted soil radon values (i.e. GRP) and gamma radiation distribution with the indoor concentrations measured in private and public buildings has been investigated, respectively. The obtained results confirm that GRP maps provide the local administration of a useful tool for land use planning and that, the mapping of gamma emission, allows to a fast and effective evaluation of indoor radon hazard because it is mainly influenced by the building materials rather than other anthropic controls

    Modeling naturally fractured carbonate as potential CGS reservoir: a case study from Sulcis Basin

    No full text
    The naturally fractured carbonates have a great potential for Carbon Geological Storage purpose because they could offer the possibility for storage in that areas where no sandstone are available. In Italy, we studied the Sulcis Basin, an area situated in SW Sardinia, where the “Miliolitico Fm.” represents the potential reservoir. This Formation consists of well bedded, about 50 m thick, mudstones and grainstones with Miliolidae, deposited in a lagoon environment during the Early Eocene. This formation has a very low primary porosity and permeability, so it is essential to characterize the fracture network that characterize the reservoir’s capacity. We performed a detailed fracture analysis at the outcrop, using scan lines and scan areas techniques. We measured the fractures spacing, aperture, length and connectivity both linearly and on a surface. These parameters were used to build several Discrete Fracture Model, using Move 2016 (Midland Valley). In particular DFN were constructed varying length and aperture values to evaluate their influence on the total secondary porosity. The same approach was also utilized in the Nuraxi Figus coal mine, where the Miliolitico crops out at a depth of -480 m b.s.l., in more confined pressure condition. Here we collected detailed scan lines. Major fractures/faults that cross the whole tunnel were also measured. These data were integrated with the previous ones for the DFN generation. A separate fracture model were generated to represent the fault network, to evaluate the different component of the brittle deformation (small fault and fractures). The fracture modeling was performed using Move 2016 and Petrel (Schlumberger); than the results were compared. The results show that most of the secondary permeability and porosity is due to faults, through which fluid circulate. Some fractures sometimes are affected by karst phenomena, that influence their aperture

    Topic and concerns related to the potential impacts of CO2 storage: results from a stakeholders questionnaire

    No full text
    This paper illustrates the results of a questionnaire designed to explore the full range of topics and concerns related to the potential impacts of CO2 geological storage. The questionnaire was compiled online by 45 European and international stakeholders from 16 different countries, including researchers, operators and regulators. The results provide a comprehensive picture of the variety of aspects that the respondents consider important from the point of view of impacts and long term safety of storage sites. The themes span from impacts on the environment to socio-economic and operational such as for instance building and management of storage sites

    Soil gas distribution in the main coseismic surface rupture zone of the 1980, Ms = 6.9, Irpinia earthquake (southern Italy)

    No full text
    Soil gas measurements of different gas species with different geochemical behaviors were performed in the area of the Pecore Plain, a 200 m Ă— 300 m sized, fault-bounded extensional basin located in the northern Mount Marzano massif, in the axial belt of the southern Apennine chain. The Pecore Plain area was affected by coseismic surface faulting during the Ms = 6.9, 1980 Irpinia earthquake, the strongest and most destructive seismic event of the last 30 years in southern Italy. The collected data and their geostatistical analysis provide new insights into the control exerted by active fault segments on deep-seated gas migration toward the surface. The results define anomalies that are aligned with the NW-SE trending coseismic rupture of the 1980 earthquake along the western border of the plain, as well as along the southern border of the plain where a hidden, E-W striking fault is inferred. Geospatial analysis highlights an anisotropic spatial behavior of 222Rn along the main NW-SE trend and of CO2 along the E-W trend. This feature suggests a correlation between the shape and orientation of the anomalies and the barrier/conduit behavior of fault zones in the area. Furthermore, our results show that gas migration through brittle deformation zones occurs by advective processes, as suggested by the relatively high migration rate needed to obtain anomalies of short-lived 222Rn in the soil pores
    corecore