8 research outputs found

    HIV Patients’ Tracer for Clinical Assistance and Research during the COVID-19 Epidemic (INTERFACE): A Paradigm for Chronic Conditions

    No full text
    The health emergency linked to the SARS-CoV-2 pandemic has highlighted problems in the health management of chronic patients due to their risk of infection, suggesting the need of new methods to monitor patients. People living with HIV/AIDS (PLWHA) represent a paradigm of chronic patients where an e-health-based remote monitoring could have a significant impact in maintaining an adequate standard of care. The key objective of the study is to provide both an efficient operating model to “follow” the patient, capture the evolution of their disease, and establish proximity and relief through a remote collaborative model. These dimensions are collected through a dedicated mobile application that triggers questionnaires on the basis of decision-making algorithms, tagging patients and sending alerts to staff in order to tailor interventions. All outcomes and alerts are monitored and processed through an innovative e-Clinical platform. The processing of the collected data aims into learning and evaluating predictive models for the possible upcoming alerts on the basis of past data, using machine learning algorithms. The models will be clinically validated as the study collects more data, and, if successful, the resulting multidimensional vector of past attributes will act as a digital composite biomarker capable of predicting HIV-related alerts. Design: All PLWH > 18 sears old and stable disease followed at the outpatient services of a university hospital (n = 1500) will be enrolled in the interventional study. The study is ongoing, and patients are currently being recruited. Preliminary results are yielding monthly data to facilitate learning of predictive models for the alerts of interest. Such models are learnt for one or two months of history of the questionnaire data. In this manuscript, the protocol—including the rationale, detailed technical aspects underlying the study, and some preliminary results—are described. Conclusions: The management of HIV-infected patients in the pandemic era represents a challenge for future patient management beyond the pandemic period. The application of artificial intelligence and machine learning systems as described in this study could enable remote patient management that takes into account the real needs of the patient and the monitoring of the most relevant aspects of PLWH management today

    HIV Patients’ Tracer for Clinical Assistance and Research during the COVID-19 Epidemic (INTERFACE): A Paradigm for Chronic Conditions

    No full text
    The health emergency linked to the SARS-CoV-2 pandemic has highlighted problems in the health management of chronic patients due to their risk of infection, suggesting the need of new methods to monitor patients. People living with HIV/AIDS (PLWHA) represent a paradigm of chronic patients where an e-health-based remote monitoring could have a significant impact in maintaining an adequate standard of care. The key objective of the study is to provide both an efficient operating model to “follow” the patient, capture the evolution of their disease, and establish proximity and relief through a remote collaborative model. These dimensions are collected through a dedicated mobile application that triggers questionnaires on the basis of decision-making algorithms, tagging patients and sending alerts to staff in order to tailor interventions. All outcomes and alerts are monitored and processed through an innovative e-Clinical platform. The processing of the collected data aims into learning and evaluating predictive models for the possible upcoming alerts on the basis of past data, using machine learning algorithms. The models will be clinically validated as the study collects more data, and, if successful, the resulting multidimensional vector of past attributes will act as a digital composite biomarker capable of predicting HIV-related alerts. Design: All PLWH > 18 sears old and stable disease followed at the outpatient services of a university hospital (n = 1500) will be enrolled in the interventional study. The study is ongoing, and patients are currently being recruited. Preliminary results are yielding monthly data to facilitate learning of predictive models for the alerts of interest. Such models are learnt for one or two months of history of the questionnaire data. In this manuscript, the protocol—including the rationale, detailed technical aspects underlying the study, and some preliminary results—are described. Conclusions: The management of HIV-infected patients in the pandemic era represents a challenge for future patient management beyond the pandemic period. The application of artificial intelligence and machine learning systems as described in this study could enable remote patient management that takes into account the real needs of the patient and the monitoring of the most relevant aspects of PLWH management today

    Eligibility for the 4 Pharmacological Pillars in Heart Failure With Reduced Ejection Fraction at Discharge

    No full text
    Background Guidelines recommend using multiple drugs in patients with heart failure (HF) with reduced ejection fraction, but there is a paucity of real‐world data on the simultaneous initiation of the 4 pharmacological pillars at discharge after a decompensation event. Methods and Results A retrospective data mart, including patients diagnosed with HF, was implemented. Consecutively admitted patients with HF with reduced ejection fraction were selected through an automated approach and categorized according to the number/type of treatments prescribed at discharge. The prevalence of contraindications and cautions for HF with reduced ejection fraction treatments was systematically assessed. Logistic regression models were fitted to assess predictors of the number of treatments (≥2 versus <2 drugs) prescribed and the risk of rehospitalization. A population of 305 patients with a first episode of HF hospitalization and a diagnosis of HF with reduced ejection fraction (ejection fraction, <40%) was selected. At discharge, 49.2% received 2 current recommended drugs, β‐blockers were prescribed in 93.4%, while a renin‐angiotensin system inhibitor or an angiotensin receptor–neprilysin inhibitor was prescribed in 68.2%. A mineralocorticoid receptor antagonist was prescribed in 32.5%, although none of the patients showed contraindications to mineralocorticoid receptor antagonist prescription. A sodium‐glucose cotransporter 2 inhibitor could be prescribed in 71.1% of patients. On the basis of current recommendations, 46.2% could receive the 4 foundational drugs at discharge. Renal dysfunction was associated with <2 foundational drugs prescribed. After adjusting for age and renal function, use of ≥2 drugs was associated with lower risk of rehospitalization during the 30 days after discharge. Conclusions A quadruple therapy could be directly implementable at discharge, potentially providing prognostic advantages. Renal dysfunction was the main prevalent condition limiting this approach

    GENERATOR HEART FAILURE DataMart: An integrated framework for heart failure research

    No full text
    BackgroundHeart failure (HF) is a multifaceted clinical syndrome characterized by different etiologies, risk factors, comorbidities, and a heterogeneous clinical course. The current model, based on data from clinical trials, is limited by the biases related to a highly-selected sample in a protected environment, constraining the applicability of evidence in the real-world scenario. If properly leveraged, the enormous amount of data from real-world may have a groundbreaking impact on clinical care pathways. We present, here, the development of an HF DataMart framework for the management of clinical and research processes. MethodsWithin our institution, Fondazione Policlinico Universitario A. Gemelli in Rome (Italy), a digital platform dedicated to HF patients has been envisioned (GENERATOR HF DataMart), based on two building blocks: 1. All retrospective information has been integrated into a multimodal, longitudinal data repository, providing in one single place the description of individual patients with drill-down functionalities in multiple dimensions. This functionality might allow investigators to dynamically filter subsets of patient populations characterized by demographic characteristics, biomarkers, comorbidities, and clinical events (e.g., re-hospitalization), enabling agile analyses of the outcomes by subsets of patients. 2. With respect to expected long-term health status and response to treatments, the use of the disease trajectory toolset and predictive models for the evolution of HF has been implemented. The methodological scaffolding has been constructed in respect of a set of the preferred standards recommended by the CODE-EHR framework. ResultsSeveral examples of GENERATOR HF DataMart utilization are presented as follows: to select a specific retrospective cohort of HF patients within a particular period, along with their clinical and laboratory data, to explore multiple associations between clinical and laboratory data, as well as to identify a potential cohort for enrollment in future studies; to create a multi-parametric predictive models of early re-hospitalization after discharge; to cluster patients according to their ejection fraction (EF) variation, investigating its potential impact on hospital admissions. ConclusionThe GENERATOR HF DataMart has been developed to exploit a large amount of data from patients with HF from our institution and generate evidence from real-world data. The two components of the HF platform might provide the infrastructural basis for a combined patient support program dedicated to continuous monitoring and remote care, assisting patients, caregivers, and healthcare professionals

    GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives

    No full text
    Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into “Not organized, not ‘ontologized’ data”, “Organized, not ‘ontologized’ data”, and “Organized and ‘ontologized’ data”. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system

    GENERATOR Breast DataMart—The Novel Breast Cancer Data Discovery System for Research and Monitoring: Preliminary Results and Future Perspectives

    No full text
    Background: Artificial Intelligence (AI) is increasingly used for process management in daily life. In the medical field AI is becoming part of computerized systems to manage information and encourage the generation of evidence. Here we present the development of the application of AI to IT systems present in the hospital, for the creation of a DataMart for the management of clinical and research processes in the field of breast cancer. Materials and methods: A multidisciplinary team of radiation oncologists, epidemiologists, medical oncologists, breast surgeons, data scientists, and data management experts worked together to identify relevant data and sources located inside the hospital system. Combinations of open-source data science packages and industry solutions were used to design the target framework. To validate the DataMart directly on real-life cases, the working team defined tumoral pathology and clinical purposes of proof of concepts (PoCs). Results: Data were classified into &ldquo;Not organized, not &lsquo;ontologized&rsquo; data&rdquo;, &ldquo;Organized, not &lsquo;ontologized&rsquo; data&rdquo;, and &ldquo;Organized and &lsquo;ontologized&rsquo; data&rdquo;. Archives of real-world data (RWD) identified were platform based on ontology, hospital data warehouse, PDF documents, and electronic reports. Data extraction was performed by direct connection with structured data or text-mining technology. Two PoCs were performed, by which waiting time interval for radiotherapy and performance index of breast unit were tested and resulted available. Conclusions: GENERATOR Breast DataMart was created for supporting breast cancer pathways of care. An AI-based process automatically extracts data from different sources and uses them for generating trend studies and clinical evidence. Further studies and more proof of concepts are needed to exploit all the potentials of this system

    Comparison of diagnostic accuracy between three different rules of interpreting high sensitivity troponin T results

    No full text
    With the introduction of high sensitivity troponin-T (hs-TnT) assay, clinicians face more patients with 'positive' results but without myocardial infarction. Repeated hs-TnT determinations are warranted to improve specificity. The aim of this study was to compare diagnostic accuracy of three different interpretation rules for two hs-TnT results taken 6 h apart. After adjusting for clinical differences, hs-TnT results were recoded according to the three rules. Rule1: hs-TnT &gt;13 ng/L in at least one determination. Rule2: change of &gt;20 % between the two measures. Rule3: change &gt;50 % if baseline hs-TnT 14-53 ng/L and &gt;20 % if baseline &gt;54 ng/L. The sensitivity, specificity and ROC curves were compared. The sensitivity analysis was used to generate post-test probability for any test result. Primary outcome was the evidence of coronary critical stenosis (CCS) on coronary angiography in patients with high-risk chest pain. 183 patients were analyzed (38.3 %) among all patients presenting with chest pain during the study period. CCS was found in 80 (43.7 %) cases. The specificity was 0.62 (0.52-0.71), 0.76 (0.66-0.84) and 0.83 (0.74-0.89) for rules 1, 2 and 3, respectively (P &lt; 0.01). Sensitivity decreased with increasing specificity (P &lt; 0.01). Overall diagnostic accuracy did not differ among the three rules (AUC curves difference P = 0.12). Sensitivity analysis showed a 25 % relative gain in predicting CCS using rule 3 compared to rule 1. Changes between two determinations of hs-TnT 6 h apart effectively improved specificity for CCS presence in high-risk chest pain patients. There was a parallel loss in sensitivity that discouraged any use of such changes as a unique way to interpret the new hs-TnT result
    corecore