121 research outputs found

    Bouncing transient currents and SQUID-like voltage in nano devices at half filling

    Full text link
    Nanorings asymmetrically connected to wires show different kinds of quantum interference phenomena under sudden excitations and in steady current conditions. Here we contrast the transient current caused by an abrupt bias to the magnetic effects at constant current. A repulsive impurity can cause charge build-up in one of the arms and reverse current spikes. Moreover, it can cause transitions from laminar current flow to vortices, and also change the chirality of the vortex. The magnetic behavior of these devices is also very peculiar. Those nano-circuits which consist of an odd number of atoms behave in a fundamentally different manner compared to those which consist of an even number of atoms. The circuits having an odd number of sites connected to long enough symmetric wires are diamagnetic; they display half-fluxon periodicity induced by many-body symmetry even in the absence of electron-phonon and electron-electron interactions. In principle one can operate a new kind of quantum interference device without superconductors. Since there is no gap and no critical temperature, one predicts qualitatively the same behavior at and above room temperature, although with a reduced current. The circuits with even site numbers, on the other hand, are paramagnetic.Comment: 7 pages, 10 figures, accepted by Phys. Rev.

    Reflections on Covid19 nasopharingeal, faecal and peritoneal swabs in an infant with Wilms tumor: A case report

    Get PDF
    Proximal Sars-Cov-2 pandemic had radically changed the way surgeons work in many departments, forcing to reserve surgical treatment only for emergency and oncologic cases. We report a case of a ten months-old girl with right-sided Wilms tumor and a previous diagnosis of Sars-Cov-2 infection, who underwent open right nephrectomy. Surgery was planned after negativization of five nasopharyngeal tests, despite the simultaneous positivity of two rectal swabs. The procedure was performed safely with appropriate personal protective equipment (PPE). To better investigate viral excretion, the anesthetist repeated nasopharyngeal swab under general anesthesia, which resulted positive. At the same time, two peritoneal swabs were collected and showed the absence of the virus in the peritoneal fluid. This case highlights the importance of combining swabs from various sources to increase sensibility of the test. The value of nasopharyngeal swab under general anesthesia should be reinforced as it can result positive even after many negative tests. Very little is known abouttransmission of the virus through the peritoneum as both presence and absence of Sars-Cov-2 have been reported in the peritoneal fluid. Next literature will clarify which particular conditions determine viral penetration in this anatomical district

    Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype.</p> <p>Methods</p> <p>The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14) by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored.</p> <p>Results</p> <p>We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs.</p> <p>Conclusion</p> <p>Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these effects can modulate the cell phenotype and can induce a higher sensitivity to tyrosine related anti-blastic drugs.</p

    Antifeedant and insecticidal effects of alfalfa saponins in the management of the Japanese beetle Popillia japonica

    Get PDF
    Popillia japonica is a quarantine pest of priority interest for the EU, given its potentially important economic, social and environmental impacts. Alternative strategies to chemical methods are essential to limit its spread in newly infested areas with favourable climatic and environmental conditions. Saponins are biologically active molecules widely distributed in plants, displaying a well-known repellent activity combined with a mortality effect against insects. In this context, saponins were extracted from alfalfa Medicago sativa, where medicagenic and zanhic acid glycosides and Soyasaponin I were the most abundant compounds and used in the laboratory and semi-field experiments for treating leaves of susceptible host plants for P. japonica. Under laboratory conditions, a food deterrence effect and a significant mortality rate were observed using Corylus avellana leaves treated at increasing saponin concentrations, ranging from 1% to 5% w/v. Semi-field condition experiment supported the food deterrence effect, as a significant food preference was observed for untreated plants of Vitis vinifera compared to treated plants. The promising results obtained suggest that alfalfa saponins could represent a potential eco-friendly approach for Japanese beetle control

    What’s in the bee nest holes? A single aggregation of Megachile parietina reveals and helps to fill up Eltonian shortfalls

    Get PDF
    Megachile (Chalicodoma) parietina (Geoffroy, 1785) is a Palearctic solitary bee included in the Red List of some central European Countries. Females build durable nests, reused year after year, by mixing soil with a salivary secretion. Like for most solitary bees, the resources contained within M. parietina nests attract several other insects which exploit pollen supplies or feed on the immature brood. These associated insects have mainly been studied for mantained bees and considered for their effect on the host reproductive success.A very large nesting aggregation of M. parietina in Central Tuscany has been studied for three consecutive years. We have identified 32 associated insect species, which certainly are an underestimate of the species present. Among the identified species, only eight had been previously reported for M. parietina. All the species were classified both according to the specificity for the host taxon (Chalicodoma, Megachilidae, Anthophila, Hymenoptera, Others) and to the ecological relationship (cleptoparasites, parasitoids, predators of larvae, food commensal, scavengers, and occasional nest users).This highlighted both the richness of the ecological network within the nesting aggregation and the value of studying these nesting sites to fill Eltonian shortfalls, i.e. the deficiency in ecology knowledge, of bees and their associated fauna.Implications for insect conservation.We suggest that, besides their role in pollination, large and stable bee nesting sites increase the local insect biodiversity, and that attention should be paid to their conservation within actions aimed to support populations of wild pollinators

    Effects of UVB-induced oxidative stress on protein expression and specific protein oxidation in normal human epithelial keratinocytes: a proteomic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The UVB component of solar ultraviolet irradiation is one of the major risk factors for the development of skin cancer in humans. UVB exposure elicits an increased generation of reactive oxygen species (ROS), which are responsible for oxidative damage to proteins, DNA, RNA and lipids. In order to examine the biological impact of UVB irradiation on skin cells, we used a parallel proteomics approach to analyze the protein expression profile and to identify oxidatively modified proteins in normal human epithelial keratinocytes.</p> <p>Results</p> <p>The expression levels of fifteen proteins - involved in maintaining the cytoskeleton integrity, removal of damaged proteins and heat shock response - were differentially regulated in UVB-exposed cells, indicating that an appropriate response is developed in order to counteract/neutralize the toxic effects of UVB-raised ROS. On the other side, the redox proteomics approach revealed that seven proteins - involved in cellular adhesion, cell-cell interaction and protein folding - were selectively oxidized.</p> <p>Conclusions</p> <p>Despite a wide and well orchestrated cellular response, a relevant oxidation of specific proteins concomitantly occurs in UVB-irradiated human epithelial Keratinocytes. These modified (i.e. likely dysfunctional) proteins might result in cell homeostasis impairment and therefore eventually promote cellular degeneration, senescence or carcinogenesis.</p

    Proteomic Analysis of Protein Expression and Oxidative Modification in R6/2 Transgenic Mice A Model of Huntington Disease

    Get PDF
    Huntington disease (HD) is a hereditary neurodegenerative disorder characterized by motor, psychiatric, and cognitive symptoms. The genetic defect responsible for the onset of the disease, expansion of CAG repeats in exon 1 of the gene that codes for huntingtin on chromosome 4, has been unambiguously identified. On the other hand, the mechanisms by which the mutation causes the disease are not completely understood yet. However, defects in energy metabolism of affected cells may cause oxidative damage, which has been proposed as one of the underlying molecular mechanisms that participate in the etiology of the disease. In our effort to investigate the extent of oxidative damage occurring at the protein level, we used a parallel proteomic approach to identify proteins potentially involved in processes upstream or downstream of the disease-causing huntingtin in a well established HD mouse model (R6/2 transgenic mice). We have demonstrated that the expression levels of dihydrolipoamide S-succinyltransferase and aspartate aminotransferase increase consistently over the course of disease (10-week-old mice). In contrast, pyruvate dehydrogenase expression levels were found to be decreased in 10-week-old HD transgenic mice compared with young (4-week-old) mice. Our experimental approach also led to the identification of oxidatively modified proteins. Six proteins were found to be significantly oxidized in old R6/2 transgenic mice compared with either young transgenic mice or non-transgenic mice. These proteins are alpha-enolase, gamma-enolase (neuron-specific enolase), aconitase, the voltage-dependent anion channel 1, heat shock protein 90, and creatine kinase. Because oxidative damage has proved to play an important role in the pathogenesis and the progression of Huntington disease, our results for the first time identify specific oxidatively modified proteins that potentially contribute to the pathogenesis of Huntington disease

    Redox proteomic analysis of carbonylated brain proteins in mild cognitive impairment and early Alzheimer&apos;s disease.

    Get PDF
    Abstract Previous studies indicated increased levels of protein oxidation in brain from subjects with Alzheimer&apos;s disease (AD), raising the question of whether oxidative damage is a late effect of neurodegeneration or precedes and contributes to the pathogenesis of AD. Hence, in the present study we used a parallel proteomic approach to identify oxidatively modified proteins in inferior parietal lobule (IPL) from subjects with mild cognitive impairment (MCI) and early stage-AD (EAD). By comparing to age-matched controls, we reasoned that such analysis could help in understanding potential mechanisms involved in upstream processes in AD pathogenesis. We have identified four proteins that showed elevated levels of protein carbonyls: carbonic anhydrase II (CA II), heat shock protein 70 (Hsp70), mitogen-activated protein kinase I (MAPKI), and syntaxin binding protein I (SBP1) in MCI IPL. In EAD IPL we identified three proteins: phosphoglycerate mutase 1 (PM1), glial fibrillary acidic protein, and fructose bisphospate aldolase C (FBA-C). Our results imply that some of the common targets of protein carbonylation correlated with AD neuropathology and suggest a possible involvement of protein modifications in the AD progression. Antioxid. Redox Signal. 12, 327-336
    • …
    corecore