15 research outputs found

    Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis

    Get PDF
    Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte–induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.Published versio

    Transport of Platinum bonded nucleotides into proteoliposomes, mediated by Drosophila melanogaster thiamine pyrophosphate carrier protein (DmTpc1)

    No full text
    The results of the present study suggest that DmTpc1 is actively implicated in the specific uptake of free cytoplasmic Pt bonded nucleotides, and therefore could be linked to the mechanism of action of some platinum-based antitumor drugs. Although DmTpc1 has a low affinity for model [Pt(dien)(N7-5′-dGTP)] and cis-[Pt(NH3)2(py)(N7-5′-dGTP)] compared to dATP it's well known that DNA platination level of few metal atoms per double-stranded molecule may account for the pharmacological activity of platinum based antitumor drugs. This is the first investigation where it has been demonstrated that a mitochondrial carrier is directly involved in the transport of metalated purines related with the cisplatin mechanism of action. Moreover it is shown as a lower hindrance of nucleotide bonded platinum complexes could strongly enhance mitochondrial uptake. Furthermore, a new application of ICP-AES addressed to measure the transport of metalated nucleobases, by using a recombinant protein reconstituted into liposomes, has been here, for the first time, developed and compared with a standard technique such as the liquid scintillation counting

    Cell uptake and processing of platinated nucleotides

    No full text
    Cisplatin, cis-[Pt(NH3)2Cl2], was the first inorganic compound applied in clinics to treat a broad range of malignancies. It is able to bind DNA on the N7 positions of adjacent G/A residues, resulting in the cross-link lesions believed to be responsible for observed antitumor activity. Sometimes N7-metalated purines seem to be characterized by a relevant antitumor activity. This has led us to hypothesize a parallel mechanism of action of platinum drugs, based on free platinated purines, formed after drug administration and incorporated into DNA by DNA polymerases. In order to evaluate this possibility, as a key step to develop new drugs, we performed experiments focused on platinated nucleobases, i.e. [Pt(dien)(N7-G)] and cis-[Pt(NH3)2(py)(N7-G)], dien = diethylenetriamine, py = pyridine, G = 5’-dGTP, cell and mitochondrial uptake and processing. For the first time cell uptake and mobility mechanisms, related to plasmatic cell and/or mitochondrial membrane crossing, has been studied. The results of the present study suggest that nucleotide carriers can be actively implicated in the specific uptake of free cytoplasmic platinum bonded nucleotides. Moreover the possible insertion of metalated nucleobases into nuclear and/or mitochondrial new synthesized DNA/RNA, operated by DNA/RNA polymerases, has been evaluated

    Mitochondrial glutamate carriers from Drosophila melanogaster: Biochemical, evolutionary and modeling studies

    Get PDF
    AbstractThe mitochondrial carriers are members of a family of transport proteins that mediate solute transport across the inner mitochondrial membrane. Two isoforms of the glutamate carriers, GC1 and GC2 (encoded by the SLC25A22 and SLC25A18 genes, respectively), have been identified in humans. Two independent mutations in SLC25A22 are associated with severe epileptic encephalopathy. In the present study we show that two genes (CG18347 and CG12201) phylogenetically related to the human GC encoding genes are present in the D. melanogaster genome. We have functionally characterized the proteins encoded by CG18347 and CG12201, designated as DmGC1p and DmGC2p respectively, by overexpression in Escherichia coli and reconstitution into liposomes. Their transport properties demonstrate that DmGC1p and DmGC2p both catalyze the transport of glutamate across the inner mitochondrial membrane. Computational approaches have been used in order to highlight residues of DmGC1p and DmGC2p involved in substrate binding. Furthermore, gene expression analysis during development and in various adult tissues reveals that CG18347 is ubiquitously expressed in all examined D. melanogaster tissues, while the expression of CG12201 is strongly testis-biased. Finally, we identified mitochondrial glutamate carrier orthologs in 49 eukaryotic species in order to attempt the reconstruction of the evolutionary history of the glutamate carrier function. Comparison of the exon/intron structure and other key features of the analyzed orthologs suggests that eukaryotic glutamate carrier genes descend from an intron-rich ancestral gene already present in the common ancestor of lineages that diverged as early as bilateria and radiata

    The biochemical properties of the mitochondrial thiamine pyrophosphate carrier from Drosophila melanogaster

    No full text
    The mitochondrial carriers are a family of transport proteins that shuttle metabolites, nucleotides and cofactors across the inner mitochondrial membrane. The genome of Drosophila melanogaster encodes at least 46 members of this family. Only five of these have been characterized, whereas the transport functions of the remainder cannot be assessed with certainty. In the present study, we report the functional identification of two D. melanogaster genes distantly related to the human and yeast thiamine pyrophosphate carrier (TPC) genes as well as the corresponding expression pattern throughout development. Furthermore, the functional characterization of the D. melanogaster mitochondrial thiamine pyrophosphate carrier protein (DmTpc1p) is described. DmTpc1p was over-expressed in bacteria, the purified protein was reconstituted into liposomes, and its transport properties and kinetic parameters were characterized. Reconstituted DmTpc1p transports thiamine pyrophosphate and, to a lesser extent, pyrophosphate, ADP, ATP and other nucleotides. The expression of DmTpc1p in Saccharomyces cerevisiae TPC1 null mutant abolishes the growth defect on fermentable carbon sources. The main role of DmTpc1p is to import thiamine pyrophosphate into mitochondria by exchange with intramitochondrial ATP and ⁄ or ADP

    A conserved role for the mitochondrial citrate transporter Sea/SLC25A1 in the maintenance of chromosome integrity

    No full text
    Histone acetylation plays essential roles in cell cycle progression, DNA repair, gene expression and silencing. Although the knowledge regarding the roles of acetylation of histone lysine residues is rapidly growing, very little is known about the biochemical pathways providing the nucleus with metabolites necessary for physiological chromatin acetylation. Here, we show that mutations in the scheggia (sea)-encoded Sea protein, the Drosophila ortholog of the human mitochondrial citrate carrier Solute carrier 25 A1 (SLC25A1), impair citrate transport from mitochondria to the cytosol. Interestingly, inhibition of sea expression results in extensive chromosome breakage in mitotic cells and induces an ATR-dependent cell cycle arrest associated with a dramatic reduction of global histone acetylation. Notably, loss of SLC25A1 in short interfering RNA (siRNA)-treated human primary fibroblasts also leads to chromosome breaks and histone acetylation defects, suggesting an evolutionary conserved role for Sea/SLC25A1 in the regulation of chromosome integrity. This study therefore provides an intriguing and unexpected link between intermediary metabolism and epigenetic control of genome stability
    corecore