36 research outputs found

    Protein phosphatase 2A (PP2A) is required for the maintenance of Drosophila chromosome integrity

    Get PDF
    Cellular responses to DNA damage are based on signal-transduction pathways involving phosphorylation-dephosphorylation events. Recent literature has demonstrated that protein serine/threonine phosphatases have important functions in DNA damage response (DDR). In particular growing evidence indicate that the protein phosphatase 2A (PP2A) plays a crucial role in genome stability maintenance, acts as tumor suppressor and is mutated in some cancer types. However current knowledge on the mechanisms and the pathways linking PP2A to DDR is still rudimentary. Although most of the roles of PP2A are evolutionarily conserved, there are at present very few data suggesting an involvement of Drosophila PP2A in DNA repair. In the course of a screening aimed at identifying new Drosophila genes involved in the maintenance of genome stability we found an allele of twins (tws) gene, encoding the regulatory PP2A B subunit, that caused frequent chromosome aberrations (CABs), suggesting that also in Drosophila this phosphatase is involved in DNA repair. We observed that all previously identified alleles at the tws locus also caused CABs and high frequency of spontaneous γ-H2Av foci. Moreover tws mutations determined γ-H2Av foci persistence in irradiated brain cells, indicating that Tws promotes foci regression by dephosphorylating γ-H2Av. We also demonstrated that mutants in the Pp4-19C gene, that encodes the PP4 catalytic subunit, affected γ-H2Av foci dissolution but not exhibited CABs suggesting that impaired foci regression is not sufficient to cause CABs. PP2A and PP4 are also involved in the G2/M checkpoint. In irradiated tws mutant brains the mitotic index (MI) did not drop at 15 minutes (min) as in control cells, but remained similar to that of non-irradiated controls without significant variations over time. In contrast in Pp4-19C mutant cells MI dropped at 15 min after irradiation but the recovery was significantly delayed. These data indicate that PP2A and PP4 are both implicated in the G2/M checkpoint although with different roles. To better understand the origin of CABs in tws mutants we tried to individuate Tws substrates by cytological examination of double mutants carrying tws mutation and mutations in genes involved in DDR pathway. This analysis revealed that mutations in the ATM-coding gene tefu and mutations in ku70 gene, encoding a component of NHEJ system, are both perfectly epistatic to tws mutations. From these data we deduced that Tws controls genome integrity through a pathway in which Ku70 is first phosphorylated by ATM and then dephosphorylated by Tws (that perhaps dephosphorylates also ATM itself) to allow DNA repair. Therefore, in tws mutants CABs are induced by the hyperphosphorylation status of Ku70

    Sugar and chromosome stability: Clastogenic effects of sugars in vitamin B6-deficient cells

    Get PDF
    Pyridoxal 5'-phosphate (PLP), the active form of vitamin B6, has been implicated in preventing human pathologies, such as diabetes and cancer. However, the mechanisms underlying the beneficial effects of PLP are still unclear. Using Drosophila as a model system, we show that PLP deficiency caused either by mutations in the pyridoxal kinase-coding gene (dPdxk) or by vitamin B6 antagonists results in chromosome aberrations (CABs). The CAB frequency in PLP-depleted cells was strongly enhanced by sucrose, glucose or fructose treatments, and dPdxk mutant cells consistently displayed higher glucose contents than their wild type counterparts, an effect that is at least in part a consequence of an acquired insulin resistance. Together, our results indicate that a high intracellular level of glucose has a dramatic clastogenic effect if combined with PLP deficiency. This is likely due to an elevated level of Advanced Glycation End-products (AGE) formation. Treatment of dPdxk mutant cells with alpha lipoic acid (ALA) lowered both AGE formation and CAB frequency, suggesting a possible AGE-CAB cause-effect relationship. The clastogenic effect of glucose in PLP-depleted cells is evolutionarily conserved. RNAi-mediated silencing of PDXK in human cells or treatments with PLP inhibitors resulted in chromosome breakage, which was potentiated by glucose and reduced by ALA. These results suggest that patients with concomitant hyperglycemia and vitamin B6 deficiency may suffer chromosome damage. This might impact on cancer risk, as CABs are a well-known tumorigenic factor

    Genomic instability and DNA replication defects in progeroid syndromes

    Get PDF
    Progeroid syndromes induced by mutations in lamin A or in its interactors – named progeroid laminopathies – are model systems for the dissection of the molecular pathways causing physio- logical and premature aging. A large amount of data, based mainly on the Hutchinson Gilford Progeria syndrome (HGPS), one of the best characterized progeroid laminopathy, has highlighted the role of lamins in multiple DNA activities, including replication, repair, chromatin organization and telomere function. On the other hand, the phenotypes generated by mutations affecting genes directly acting on DNA function, as mutations in the helicases WRN and BLM or in the polymerase polδ, share many of the traits of progeroid laminopathies. These evidences support the hypothesis of a concerted implication of DNA function and lamins in aging. We focus here on these aspects to contribute to the comprehension of the driving forces acting in progeroid syndromes and premature aging

    The Relationship Between Vitamin B6, Diabetes and Cancer

    Get PDF
    Pyridoxal 5\u2032-phosphate (PLP), the active form of vitamin B6, works as cofactor in numerous enzymatic reactions and it behaves as antioxidant molecule. PLP deficiency has been associated to many human pathologies including cancer and diabetes and the mechanism behind this connection is now becoming clearer. Inadequate intake of this vitamin increases the risk of many cancers; furthermore, PLP deprivation impairs insulin secretion in rats, whereas PLP supplementation prevents diabetic complications and improves gestational diabetes. Growing evidence shows that diabetes and cancer are correlated not only because they share same risk factors but also because diabetic patients have a higher risk of developing tumors, although the underlying mechanisms remain elusive. In this review, we will explore data obtained in Drosophila revealing the existence of a connection between vitamin B6, DNA damage and diabetes, as flies in the past decade turned out to be a promising model also for metabolic diseases including diabetes. We will focus on recent studies that revealed a specific role for PLP in maintaining chromosome integrity and glucose homeostasis, and we will show that these aspects are correlated. In addition, we will discuss recent data identifying PLP as a putative linking factor between diabetes and cancer

    p53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice

    Get PDF
    Epilepsy is a complex clinical condition characterized by repeated spontaneous seizures. Seizures have been linked to multiple drivers including DNA damage accumulation. Investigation of epilepsy physiopathology in humans imposes ethical and practical limitations, for this reason model systems are mostly preferred. Among animal models, mouse mutants are particularly valuable since they allow conjoint behavioral, organismal, and genetic analyses. Along with this, since aging has been associated with higher frequency of seizures, prematurely aging mice, simulating human progeroid diseases, offer a further useful modeling element as they recapitulate aging over a short time-window. Here we report on a mouse mutant with progeroid traits that displays repeated spontaneous seizures. Mutant mice were produced by reducing the expression of the gene Ft1 (AKTIP in humans). In vitro, AKTIP/Ft1 depletion causes telomere aberrations, DNA damage, and cell senescence. AKTIP/Ft1 interacts with lamins, which control nuclear architecture and DNA function. Premature aging defects of Ft1 mutant mice include skeletal alterations and lipodystrophy. The epileptic behavior of Ft1 mutant animals was age and sex linked. Seizures were observed in 18 mutant mice (23.6% of aged ≥ 21 weeks), at an average frequency of 2.33 events/mouse. Time distribution of seizures indicated non-random enrichment of seizures over the follow-up period, with 75% of seizures happening in consecutive weeks. The analysis of epileptic brains did not reveal overt brain morphological alterations or severe neurodegeneration, however, Ft1 reduction induced expression of the inflammatory markers IL-6 and TGF-β. Importantly, Ft1 mutant mice with concomitant genetic reduction of the guardian of the genome, p53, showed no seizures or inflammatory marker activation, implicating the DNA damage response into these phenotypes. This work adds insights into the connection among DNA damage, brain function, and aging. In addition, it further underscores the importance of model organisms for studying specific phenotypes, along with permitting the analysis of genetic interactions at the organismal level

    Citron Kinase Deficiency Leads to Chromosomal Instability and TP53-Sensitive Microcephaly

    Get PDF
    Mutations in citron (CIT), leading to loss or inactivation of the citron kinase protein (CITK), cause primary microcephaly in humans and rodents, associated with cytokinesis failure and apoptosis in neural progenitors. We show that CITK loss induces DNA damage accumulation and chromosomal instability in both mammals and Drosophila. CITK-deficient cells display "spontaneous" DNA damage, increased sensitivity to ionizing radiation, and defective recovery from radiation-induced DNA lesions. In CITK-deficient cells, DNA double-strand breaks increase independently of cytokinesis failure. Recruitment of RAD51 to DNA damage foci is compromised by CITK loss, and CITK physically interacts with RAD51, suggesting an involvement of CITK in homologous recombination. Consistent with this scenario, in doubly CitK and Trp53 mutant mice, neural progenitor cell death is dramatically reduced; moreover, clinical and neuroanatomical phenotypes are remarkably improved. Our results underscore a crucial role of CIT in the maintenance of genomic integrity during brain development

    Mice with reduced expression of the telomere-associated protein Ft1 develop p53-sensitive progeroid traits

    Get PDF
    Human AKTIP and mouse Ft1 are orthologous ubiquitin E2 variant proteins involved in telomere maintenance and DNA replication. AKTIP also interacts with A- and B-type lamins. These features suggest that Ft1 may be implicated in aging regulatory pathways. Here, we show that cells derived from hypomorph Ft1 mutant (Ft1kof/kof ) mice exhibit telomeric defects and that Ft1kof/kof animals develop progeroid traits, including impaired growth, skeletal and skin defects, abnormal heart tissue, and sterility. We also demonstrate a genetic interaction between Ft1 and p53. The analysis of mice carrying mutations in both Ft1 and p53 (Ft1kof/kof ; p53ko/ko and Ft1kof/kof ; p53+/ko ) showed that reduction in p53 rescues the progeroid traits of Ft1 mutants, suggesting that they are at least in part caused by a p53-dependent DNA damage response. Conversely, Ft1 reduction alters lymphomagenesis in p53 mutant mice. These results identify Ft1 as a new player in the aging process and open the way to the analysis of its interactions with other progeria genes using the mouse model

    Vitamin B6 rescues insulin resistance and glucose-induced DNA damage caused by reduced activity of Drosophila PI3K

    Get PDF
    : The insulin signaling pathway controls cell growth and metabolism, thus its deregulation is associated with both cancer and diabetes. Phosphatidylinositol 3-kinase (PI3K) contributes to the cascade of phosphorylation events occurring in the insulin pathway by activating the protein kinase B (PKB/AKT), which phosphorylates several substrates, including those involved in glucose uptake and storage. PI3K inactivating mutations are associated with insulin resistance while activating mutations are identified in human cancers. Here we show that RNAi-induced depletion of the Drosophila PI3K catalytic subunit (Dp110) results in diabetic phenotypes such as hyperglycemia, body size reduction, and decreased glycogen content. Interestingly, we found that hyperglycemia produces chromosome aberrations (CABs) triggered by the accumulation of advanced glycation end-products and reactive oxygen species. Rearing PI3KRNAi flies in a medium supplemented with pyridoxal 5'-phosphate (PLP; the catalytically active form of vitamin B6) rescues DNA damage while, in contrast, treating PI3KRNAi larvae with the PLP inhibitor 4-deoxypyridoxine strongly enhances CAB frequency. Interestingly, PLP supplementation rescues also diabetic phenotypes. Taken together, our results provide a strong link between impaired PI3K activity and genomic instability, a crucial relationship that needs to be monitored not only in diabetes due to impaired insulin signaling but also in cancer therapies based on PI3K inhibitors. In addition, our findings confirm the notion that vitamin B6 is a good natural remedy to counteract insulin resistance and its complications

    Nuclear actin polymerization rapidly mediates replication fork remodeling upon stress by limiting PrimPol activity

    Get PDF
    Cells rapidly respond to replication stress actively slowing fork progression and inducing fork reversal. How replication fork plasticity is achieved in the context of nuclear organization is currently unknown. Using nuclear actin probes in living and fixed cells, we visualized nuclear actin filaments in unperturbed S phase and observed their rapid extension in number and length upon genotoxic treatments, frequently taking contact with replication factories. Chemically or genetically impairing nuclear actin polymerization shortly before these treatments prevents active fork slowing and abolishes fork reversal. Defective fork remodeling is linked to deregulated chromatin loading of PrimPol, which promotes unrestrained and discontinuous DNA synthesis and limits the recruitment of RAD51 and SMARCAL1 to nascent DNA. Moreover, defective nuclear actin polymerization upon mild replication interference induces chromosomal instability in a PRIMPOL-dependent manner. Hence, by limiting PrimPol activity, nuclear F-actin orchestrates replication fork plasticity and is a key molecular determinant in the rapid cellular response to genotoxic treatments
    corecore