1,306 research outputs found

    High-performance fiber/epoxy composite pressure vessels

    Get PDF
    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended

    Effective photon-photon interaction in a two-dimensional "photon fluid"

    Full text link
    We formulate an effective theory for the atom-mediated photon-photon interactions in a two-dimensional ``photon fluid'' confined in a Fabry-Perot resonator. With the atoms modelled by a collection of anharmonic Lorentz oscillators, the effective interaction is evaluated to second order in the coupling constant (the anharmonicity parameter). The interaction has the form of a renormalized two-dimensional delta-function potential, with the renormalization scale determined by the physical parameters of the system, such as density of atoms and the detuning of the photons relative to the resonance frequency of the atoms. For realistic values of the parameters, the perturbation series has to be resummed, and the effective interaction becomes independent of the ``bare'' strength of the anharmonic term. The resulting expression for the non-linear Kerr susceptibility, is parametrically equal to the one found earlier for a dilute gas of two-level atoms. Using our result for the effective interaction parameter, we derive conditions for the formation of a photon fluid, both for Rydberg atoms in a microwave cavity and for alkali atoms in an optical cavity.Comment: 25 pages (revtex4), including 2 figure

    Relativistic Tunneling Through Two Successive Barriers

    Full text link
    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called \emph{Generalized Hartman Effect}, an effect observed in the context of nonrelativistic tunneling as well as in its electromagnetic counterparts, and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the Generalized Hartman Effect. We compare our results with the nonrelativistic ones and discuss their interpretation.Comment: 7 pages, 3 figures. Revised version, with a new appendix added. Slightly changes in the styles and captions of Figures 1 and 2. To appear in Physical Review

    Operation of the SUPARAMP at 33GHz

    Get PDF
    A 9mm degenerate parametric amplifier was constructed using a linear, series array of unbiased Josephson junctions as the active, nonlinear element. A balanced diode mixer was used as a synchronous detector, with a single source serving both as the pump and as the mixer local oscillator. A stable, net gain of 15 dB in an instantaneous bandwith (FWHM) of 3.4 GHz was achieved. A system noise temperature of 220 K + or - 5 K (DSB) was measured with a SUPARAMP contribution of only 20 K x or - 10 K. Output saturation was observed and complicates the interpretation of the noise temperature measurements and may render them upper limits. A comparison was made with the results of an earlier 3 cm suparamp. The data is in substantial agreement with theoretical predictions

    The Electron Spectral Function in Two-Dimensional Fractionalized Phases

    Get PDF
    We study the electron spectral function of various zero-temperature spin-charge separated phases in two dimensions. In these phases, the electron is not a fundamental excitation of the system, but rather ``decays'' into a spin-1/2 chargeless fermion (the spinon) and a spinless charge e boson (the chargon). Using low-energy effective theories for the spinons (d-wave pairing plus possible N\'{e}el order), and the chargons (condensed or quantum disordered bosons), we explore three phases of possible relevance to the cuprate superconductors: 1) AF*, a fractionalized antiferromagnet where the spinons are paired into a state with long-ranged N\'{e}el order and the chargons are 1/2-filled and (Mott) insulating, 2) the nodal liquid, a fractionalized insulator where the spinons are d-wave paired and the chargons are uncondensed, and 3) the d-wave superconductor, where the chargons are condensed and the spinons retain a d-wave gap. Working within the Z2Z_2 gauge theory of such fractionalized phases, our results should be valid at scales below the vison gap. However, on a phenomenological level, our results should apply to any spin-charge separated system where the excitations have these low-energy effective forms. Comparison with ARPES data in the undoped, pseudogapped, and superconducting regions is made.Comment: 10 page

    Disruptive body patterning of cuttlefish (Sepia officinalis) requires visual information regarding edges and contrast of objects in natural substrate backgrounds

    Get PDF
    Author Posting. © Marine Biological Laboratory, 2005. This article is posted here by permission of Marine Biological Laboratory for personal use, not for redistribution. The definitive version was published in Biological Bulletin 208 (2005): 7-11.Cuttlefish (Sepia officinalis Linnaeus, 1758) on mixed light and dark gravel show disruptive body patterns for camouflage. This response is evoked when the size of the gravel is equivalent to the area of the "White square," a component of its dorsal mantle patterns. However, the features of natural substrates that cuttlefish cue on visually are largely unknown. Therefore, we aimed to identify those visual features of background objects that are required to evoke disruptive coloration. At first, we put young cuttlefish in a circular experimental arena, presented them with natural gravel and photographs of natural gravel, and established that the animals would show a disruptive pattern when presented either with three-dimensional natural gravel or its two-dimensional photographic representation. We then manipulated the digital photographs by applying (i) a low-pass filter to remove the edges of the fragments of gravel, and (ii) a high-pass filter to remove the contrast among them. The body patterns produced by the cuttlefish in response to these altered visual stimuli were then video-recorded and graded. The results show that, to evoke disruptive coloration in cuttlefish, visual information about the edges and contrast of objects within natural substrate backgrounds is required.We are grateful for funding from the Sholley Foundation and Anteon contract #USAF-5408-04-SC-0002

    Stable multiple-charged localized optical vortices in cubic-quintic nonlinear media

    Full text link
    The stability of two-dimensional bright vortex solitons in a media with focusing cubic and defocusing quintic nonlinearities is investigated analytically and numerically. It is proved that above some critical beam powers not only one- and two-charged but also multiple-charged stable vortex solitons do exist. A vortex soliton occurs robust with respect to symmetry-breaking modulational instability in the self-defocusing regime provided that its radial profile becomes flattened, so that a self-trapped wave beam gets a pronounced surface. It is demonstrated that the dynamics of a slightly perturbed stable vortex soliton resembles an oscillation of a liquid stream having a surface tension. Using the idea of sustaining effective surface tension for spatial vortex soliton in a media with competing nonlinearities the explanation of a suppression of the modulational instability is proposed.Comment: 4 pages, 3 figures. Submitted to Journal of Optics A. The proceedings of the workshop NATO ARW, Kiev 2003 Singular Optics 200

    Safety Intelligence and Legal Machine Language: Do We Need the Three Laws of Robotics?

    Get PDF
    In this chapter we will describe a legal framework for Next Generation Robots (NGRs) that has safety as its central focus. The framework is offered in response to the current lack of clarity regarding robot safety guidelines, despite the development and impending release of tens of thousands of robots into workplaces and homes around the world. We also describ
    corecore