8,018 research outputs found
Flavor SU(3) analysis of charmless B->PP decays
We perform a global fits to charmless decays which independently
constrain the vertex of the unitarity triangle. The
fitted amplitudes and phase are used to predict the branching ratios and CP
asymmetries of all decay modes, including those of the system. Different
schemes of SU(3) breaking in decay amplitude sizes are analyzed. The
possibility of having a new physics contribution to decays is also
discussed.Comment: 3 pages, 2 figs. Talk given at EPS-HEP07 To appear in the
proceedings, Reference adde
Fluctuations of Entropy Production in Partially Masked Electric Circuits: Theoretical Analysis
In this work we perform theoretical analysis about a coupled RC circuit with
constant driven currents. Starting from stochastic differential equations,
where voltages are subject to thermal noises, we derive time-correlation
functions, steady-state distributions and transition probabilities of the
system. The validity of the fluctuation theorem (FT) is examined for scenarios
with complete and incomplete descriptions.Comment: 4 pages, 1 figur
Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems
Physical layer multicasting with opportunistic user selection (OUS) is
examined for multicell multi-antenna wireless systems. By adopting a two-layer
encoding scheme, a rate-adaptive channel code is applied in each fading block
to enable successful decoding by a chosen subset of users (which varies over
different blocks) and an application layer erasure code is employed across
multiple blocks to ensure that every user is able to recover the message after
decoding successfully in a sufficient number of blocks. The transmit signal and
code-rate in each block determine opportunistically the subset of users that
are able to successfully decode and can be chosen to maximize the long-term
multicast efficiency. The employment of OUS not only helps avoid
rate-limitations caused by the user with the worst channel, but also helps
coordinate interference among different cells and multicast groups. In this
work, efficient algorithms are proposed for the design of the transmit
covariance matrices, the physical layer code-rates, and the target user subsets
in each block. In the single group scenario, the system parameters are
determined by maximizing the group-rate, defined as the physical layer
code-rate times the fraction of users that can successfully decode in each
block. In the multi-group scenario, the system parameters are determined by
considering a group-rate balancing optimization problem, which is solved by a
successive convex approximation (SCA) approach. To further reduce the feedback
overhead, we also consider the case where only part of the users feed back
their channel vectors in each block and propose a design based on the balancing
of the expected group-rates. In addition to SCA, a sample average approximation
technique is also introduced to handle the probabilistic terms arising in this
problem. The effectiveness of the proposed schemes is demonstrated by computer
simulations.Comment: Accepted by IEEE Transactions on Signal Processin
Unique gap structure and symmetry of the charge density wave in single-layer VSe
Single layers of transition metal dichalcogenides (TMDCs) are excellent
candidates for electronic applications beyond the graphene platform; many of
them exhibit novel properties including charge density waves (CDWs) and
magnetic ordering. CDWs in these single layers are generally a planar
projection of the corresponding bulk CDWs because of the quasi-two-dimensional
nature of TMDCs; a different CDW symmetry is unexpected. We report herein the
successful creation of pristine single-layer VSe, which shows a () CDW in contrast to the (4 4) CDW for the layers in
bulk VSe. Angle-resolved photoemission spectroscopy (ARPES) from the single
layer shows a sizable () CDW gap of 100 meV at the
zone boundary, a 220 K CDW transition temperature twice the bulk value, and no
ferromagnetic exchange splitting as predicted by theory. This robust CDW with
an exotic broken symmetry as the ground state is explained via a
first-principles analysis. The results illustrate a unique CDW phenomenon in
the two-dimensional limit
Determination of Dynamic Shear Modulus of Soils from Static Strength
A correlation study between the dynamic shear modulus obtained from the resonant column technique and the static strength obtained from the undrained triaxial compression test is described. The materials studied were a uniform sand, a non-active fine silty clay and a highly-active bentonite clay treated with additives to increase the range for static and dynamic shear strength of the soils. It is noted that a linear relationship exists between the dynamic shear modulus, except for those soil specimens having very low strength, independent of test parameters. Using linear regression analysis, empirical equations for predicting the maximum dynamic shear modulus from the static strength have been obtained for the three different soils
Flavor symmetry analysis of charmless B --> VP decays
Based upon flavor SU(3) symmetry, we perform global fits to charmless
B decays into one pseudoscalar meson and one vector meson in the final
states. We consider different symmetry breaking schemes and find that the one
implied by na{\"i}ve factorization is slightly favored over the exact symmetry
case. The vertex of the unitarity triangle (UT)
constrained by our fits is consistent with other methods within errors. We have
found large color-suppressed, electroweak penguin and singlet penguin
amplitudes when the spectator quark ends up in the final-state vector meson.
Nontrivial relative strong phases are also required to explain the data. The
best-fit parameters are used to compute branching ratio and CP asymmetry
observables in all of the decay modes, particularly those in the decays
to be measured at the Tevatron and LHC experiments.Comment: 23 pages and 2 plots; updated with ICHEP'08 data and expanded in
discussions and reference
Recommended from our members
Using positive images to manage resistance-to-care and combative behaviors in nursing home residents with dementia: A pilot study.
This pilot study attempted to reduce resistance-to-care (RTC) and combative behaviors in nursing home residents with dementia by eliciting their positive affect. Four female residents with dementia were recruited from a nursing facility. Each resident was involved in one intervention trial and one control trial. The response of the residents was assessed by the Agitated Behavior Scale and the Observational Measurement of Engagement Tool. The distress level of the certified nursing assistants (CNAs) delivering the care was reported through the Distress Thermometer. Results showed that the residents displayed fewer behavioral symptoms in the intervention trial than in the control trial. The CNAs reported less distress in the intervention trial than in the control trial. These preliminary findings suggest that it might be feasible to use positive images to reduce residents' behavioral symptoms and decrease the distress of CNAs
GENDER DIFFERENCE IN KNEE MOTION PATTERN DURING VERTICAL JUMP
Several factors have been proposed as contributors to increase the injuries rate on noncontact ACL rupture among female athletes. Altered movement pattern may results in increased incidence of non-contact ACL injuries for female athletes. Therefore, the purpose of this study was to compare the knee kinematics difference between male and female athletes. Eighteen athletes were participated in this study, including 10 male and 8 female. The Zebris 3 D ultrasound-based system was used to measurement the knee kinematics during vertical jump. The results were shown that there had significant difference in knee maximal flexion, internal rotation, and flexion angle at maximal knee abduction between male and female athlete during vertical jump. Female athletes had showed little change of flexion angle and internal rotation angle of knee during vertical jump
- …