6 research outputs found

    Liquefied petroleum gas or biomass for cooking and effects on birth weight

    Get PDF
    BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear. METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks’ gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 μm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy. RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 μg per cubic meter in the intervention group and 70.7 μg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, −10.1 to 49.2). CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682. opens in new tab.

    Nitrogen dioxide exposures from biomass cookstoves in the Peruvian Andes

    No full text
    Household air pollution from biomass cookstoves is a major contributor to global morbidity and mortality, yet little is known about exposures to nitrogen dioxide (NO ). To characterize NO kitchen area concentrations and personal exposures among women with biomass cookstoves in the Peruvian Andes. We measured kitchen area NO concentrations at high-temporal resolution in 100 homes in the Peruvian Andes. We assessed personal exposure to NO in a subsample of 22 women using passive samplers. Among 97 participants, the geometric mean (GM) highest hourly average NO concentration was 723 ppb (geometric standard deviation (GSD) 2.6) and the GM 24-hour average concentration was 96 ppb (GSD 2.6), 4.4 and 2.9 times greater than WHO indoor hourly (163 ppb) and annual (33 ppb) guidelines, respectively. Compared to the direct-reading instruments, we found similar kitchen area concentrations with 48-hour passive sampler measurements (GM 108 ppb, GSD 3.8). Twenty-seven percent of women had 48-hour mean personal exposures above WHO annual guidelines (GM 18 ppb, GSD 2.3). In univariate analyses, we found that roof, wall, and floor type, as well as higher SES, was associated with lower 24-hour kitchen area NO concentrations. Kitchen area concentrations and personal exposures to NO from biomass cookstoves in the Peruvian Andes far exceed WHO guidelines. More research is warranted to understand the role of this understudied household air pollutant on morbidity and mortality and to inform cleaner-cooking interventions for public health

    LPG stove and fuel intervention among pregnant women reduce fine particle air pollution exposures in three countries: Pilot results from the HAPIN trial

    No full text

    Designing a comprehensive behaviour change intervention to promote and monitor exclusive use of liquefied petroleum gas stoves for the Household Air Pollution Intervention Network (HAPIN) trial

    No full text
    Introduction Increasing use of cleaner fuels, such as liquefied petroleum gas (LPG), and abandonment of solid fuels is key to reducing household air pollution and realising potential health improvements in low-income countries. However, achieving exclusive LPG use in households unaccustomed to this type of fuel, used in combination with a new stove technology, requires substantial behaviour change. We conducted theory-grounded formative research to identify contextual factors influencing cooking fuel choice to guide the development of behavioural strategies for the Household Air Pollution Intervention Network (HAPIN) trial. The HAPIN trial will assess the impact of exclusive LPG use on air pollution exposure and health of pregnant women, older adult women, and infants under 1 year of age in Guatemala, India, Peru, and Rwanda.Methods Using the Capability, Opportunity, Motivation–Behaviour (COM–B) framework and Behaviour Change Wheel (BCW) to guide formative research, we conducted in-depth interviews, focus group discussions, observations, key informant interviews and pilot studies to identify key influencers of cooking behaviours in the four countries. We used these findings to develop behavioural strategies likely to achieve exclusive LPG use in the HAPIN trial.Results We identified nine potential influencers of exclusive LPG use, including perceived disadvantages of solid fuels, family preferences, cookware, traditional foods, non-food-related cooking, heating needs, LPG awareness, safety and cost and availability of fuel. Mapping formative findings onto the theoretical frameworks, behavioural strategies for achieving exclusive LPG use in each research site included free fuel deliveries, locally acceptable stoves and equipment, hands-on training and printed materials and videos emphasising relevant messages. In the HAPIN trial, we will monitor and reinforce exclusive LPG use through temperature data loggers, LPG fuel delivery tracking, in-home observations and behavioural reinforcement visits.Conclusion Our formative research and behavioural strategies can inform the development, implementation, monitoring and evaluation of theory-informed strategies to promote exclusive LPG use in future stove programmes and research studies.Trial registration number NCT02944682, Pre-results
    corecore