18 research outputs found

    Randomized trial of amino acid mixture combined with physical activity promotion for abdominal fat reduction in overweight adults

    Get PDF
    Purpose: The purpose of this study was to test the efficacy of arginine, alanine, and phenylalanine mixture (A-mix) ingestion at 1,500 mg/day in combination with the promotion of physical activity for abdominal fat reduction in overweight adults.Methods: A placebo-controlled, double-blind, parallel-group, randomized trial for 12 weeks combined with a 4-week follow-up period was conducted at a single center in Minato-ku, Tokyo, Japan, between December 2016 and May 2017. Data were analyzed between June and August 2017. The study participants were 200 overweight adults within the age range of 20–64 years. The participants were randomly assigned to the A-mix group (n=100) or a placebo group (n=100) and were administered 500 mL of test beverage containing 1,500 or 0 mg of A-mix, respectively, for 12 weeks. All participants maintained a physically active lifestyle between week 0 and week 12 through monthly sessions of physical activity. The primary outcomes were the 12-week changes in the abdominal total, subcutaneous, and visceral fat areas, as assessed by computed tomography.Results: Of the 200 enrolled participants, 199 (99%) accomplished the 12-week intervention and 4-week follow-up period. The per-protocol-based analysis for 194 participants demonstrated that the abdominal total fat area decreased significantly in the A-mix group compared with that in the placebo group (difference, 10.0 cm2; 95% confidence interval [CI]: 0.4–19.6 cm2; P=0.041). Comparable outcomes were obtained for the abdominal subcutaneous fat area (difference, 7.4 cm2; 95% CI: 0.1–14.7 cm2; P=0.047). No study-related unfavorable events occurred.Conclusion: A-mix supplementation in combination with physical activity promotion facilitated abdominal fat reduction in overweight adults

    Dose-ranging pilot randomized trial of amino acid mixture combined with physical activity promotion for reducing abdominal fat in overweight adults

    Get PDF
    Objective: The objective of this study was to determine the effective dose of an amino acid mixture comprising arginine, alanine, and phenylalanine combined with physical activity promotion in reducing abdominal fat among overweight adults.Methods: A 12-week randomized, double-blind, placebo-controlled, dose-ranging, pilot trial was conducted in Mito, Japan, from January through April 2016, and the data were analyzed from May through November 2016. The study participants were 35 overweight adults, aged 20–64 years, with no regular exercise habit. Participants were randomly assigned to high-dose (3,000 mg/d, n=9), medium-dose (1,500 mg/d, n=9), low-dose (750 mg/d, n=8), or placebo (0 mg/d, n=9) groups, and the test beverage containing the amino acid mixture or placebo was administered for 12 weeks. All participants maintained a physically active lifestyle during the study period through monthly physical activity promotion sessions and smartphone-based self-monitoring with wearable trackers. Primary outcomes were changes in abdominal total, subcutaneous, and visceral fat areas, assessed by computed tomography.Results: Of the 35 enrolled participants, 32 completed the 12-week follow-up visit. The intention-to-treat analysis revealed that the changes in abdominal total fat area were −14.6 cm2 (95% confidence interval [CI], −39.6 cm2 to 10.4 cm2), −25.3 cm2 (95% CI, −71.0 cm2 to 20.3 cm2), −23.2 cm2 (95% CI, −48.0 cm2 to 1.6 cm2), and −12.5 cm2 (95% CI, −29.1 cm2 to 4.0 cm2) in the high-dose, medium-dose, low-dose, and placebo groups, respectively. Similar results were obtained for visceral and subcutaneous fat areas. No study-related adverse events were reported.Conclusion: Compared with placebo, a medium or low dose of the amino acid mixture may facilitate abdominal fat reduction among overweight adults. A larger randomized trial with sufficient statistical power should be implemented to validate the effectiveness of this supplement

    Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men

    No full text
    To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of aminoacidemia compared with a free amino acid mixture when both are ingested orally. We assessed the effects of whey protein hydrolysate (WPH) ingestion on postprandial aminoacidemia, especially plasma leucine levels, compared to ingestion of a free amino acid mixture. This study was an open-label, randomized, 4 × 4 Latin square design. After 12–15 h of fasting, 11 healthy young men ingested the WPH (3.3, 5.0, or 7.5 g of protein) or the EAA mixture (2.5 g). Blood samples were collected before ingestion and at time points from 10 to 120 min after ingestion, and amino acids, insulin, glucose and insulin-like growth factor-1 (IGF-1) concentrations in plasma were measured. Even though the EAA mixture and 5.0 g of the WPH contained similar amounts of EAA and leucine, the WPH was associated with significantly higher plasma EAA and leucine levels. These results suggest that the WPH can induce a higher level of aminoacidemia compared with a free amino acid mixture when both are ingested orally

    Effects of Whey, Caseinate, or Milk Protein Ingestion on Muscle Protein Synthesis after Exercise

    No full text
    Whey protein (WP) is characterized as a “fast” protein and caseinate (CA) as a “slow” protein according to their digestion and absorption rates. We hypothesized that co-ingestion of milk proteins (WP and CA) may be effective for prolonging the muscle protein synthesis response compared to either protein alone. We therefore compared the effect of ingesting milk protein (MP) to either WP or CA alone on muscle protein synthesis after exercise in rats. We also compared the effects of these milk-derived proteins to a control, soy protein (SP). Male Sprague-Dawley rats swam for two hours. Immediately after exercise, one of the following four solutions was administered: WP, CA, MP, or SP. Individual rats were euthanized at designated postprandial time points and triceps muscle samples collected for measurement of the protein fractional synthesis rate (FSR). FSR tended to increase in all groups post-ingestion, although the initial peaks of FSR occurred at different times (WP, peak time = 60 min, FSR = 7.76%/day; MP, peak time = 90 min, FSR = 8.34%/day; CA, peak time = 120 min, FSR = 7.85%/day). Milk-derived proteins caused significantly greater increases (p < 0.05) in FSR compared with SP at different times (WP, 60 min; MP, 90 and 120 min; CA, 120 min). Although statistical analysis could not be performed, the calculated the area under the curve (AUC) values for FSR following this trend were: MP, 534.61; CA, 498.22; WP, 473.46; and SP, 406.18. We conclude that ingestion of MP, CA or WP causes the initial peak time in muscle protein synthesis to occur at different times (WP, fast; MP, intermediate; CA, slow) and the dairy proteins have a superior effect on muscle protein synthesis after exercise compared with SP

    Post-Exercise Muscle Protein Synthesis in Rats after Ingestion of Acidified Bovine Milk Compared with Skim Milk

    No full text
    Bovine milk proteins have a low absorption rate due to gastric acid-induced coagulation. Acidified milk remains liquid under acidic conditions; therefore, the absorption rate of its protein may differ from that of untreated milk. To investigate how this would affect muscle protein synthesis (MPS), we compared MPS after ingestion of acidified versus skim milk in rats. Male Sprague-Dawley rats swam for 2 h and were immediately administered acidified or skim milk, then euthanized at 30, 60, 90, and 120 min afterwards. Triceps muscle samples were excised for assessing fractional synthetic rate (FSR), plasma components, intramuscular free amino acids and mTOR signaling. The FSR in the acidified milk group was significantly higher than in the skim milk group throughout the post-ingestive period. Plasma essential amino acids, leucine, and insulin levels were significantly increased in the acidified milk group at 30 min after administration compared to the skim milk group. In addition, acidified milk ingestion was associated with greater phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6K1), and sustained phosphorylation of 4E-binding protein 1 (4E-BP1). These results indicate that compared with untreated milk, acidified milk ingestion is associated with greater stimulation of post-exercise MPS
    corecore