93 research outputs found

    ショウニ ヒマン ニオケル β3 アドレナリン ジュヨウタイ イデンシ Trp64Arg ヘンイ ノ リンショウ イデンガクテキ ケンキュウ

    Get PDF
    β-アドレナリン受容体(以下、βーAR)は、脂肪組織、特に内臓脂肪に多く分布し、脂肪の分解や熱産生に関与している。1995年に、βーAR遺伝子の第1細胞膜内ループにある64番目のコドンが、TrpからArgに置換されたミスセンス変異が ...筑波大学博士 (医学) 学位論文・平成11年10月31日授与 (乙第1564号)付: 参考文献[3]は下つき文字論文概要 -- 標題紙,目次 -- はじめに -- 第I章 文献的考察 -- 第II章 β3-AR遺伝子Trp64Arg変異と小児肥満 -- 第III章 肥満男児におけるβ3-AR遺伝子Trp64Arg変異と体脂肪分布 -- 第IV章 結語 -- 謝辞 -- 第V章 引用文

    Fluid dynamics in patients with nasal disease

    Get PDF
    Computational fluid dynamics (CFD) analysis is useful for quantitative assessment in patients with upper airway obstructions. We compared CFD analysis with rhinomanometry (RM) and acoustic rhinometry (AR). Twenty patients with nasal and paranasal diseases who required computed tomography assessment underwent RM and AR. We measured the pressure and velocity at four parts of the upper airway using CFD analysis. Then we evaluated the correlation among CFD analysis, RM, and AR. CFD analysis detected obstruction sites in the nasal airway and pharynx in 14 and 2patients, respectively. High negative pressure accompanied the nasal obstruction, even behind the nasal cavity. Nasal airway pressure measured using CFD analysis strongly correlated with nasal resistance in RM (Spearman correlation coefficient=0.853). CFD analysis’s sensitivity and specificity to detect the obstruction were 84.6% and 57.1%, respectively (compared to those of RM) and 83.3% and 50.0%, respectively (compared to those of AR). The CFD analysis’s ability to detect obstruction was comparable to that of RM and AR; therefore, it may help evaluate the upper airways in patients with nasal and paranasal diseases. We found impaired nasal ventilation also affected other parts of the upper airway. Further studies with a larger sample size are required to validate the use of CFD analysis for assessing the degree of upper airway ventilation disorders
    corecore