5,366 research outputs found

    Kaluza-Klein Dark Matter

    Get PDF
    We propose that cold dark matter is made of Kaluza-Klein particles and explore avenues for its detection. The lightest Kaluza-Klein state is an excellent dark matter candidate if standard model particles propagate in extra dimensions and Kaluza-Klein parity is conserved. We consider Kaluza-Klein gauge bosons. In sharp contrast to the case of supersymmetric dark matter, these annihilate to hard positrons, neutrinos and photons with unsuppressed rates. Direct detection signals are also promising. These conclusions are generic to bosonic dark matter candidates.Comment: 4 pages, 3 figures, discussion of spin-independent cross section clarified, references added, published versio

    SoC-based biomedical embedded system design of arrhythmia detector

    Get PDF
    Arrhythmia is an irregular heartbeat where the blood may not be delivered effectively throughout the body and cause sudden cardiac arrest (SCA). Immediate treatment is required to prevent SCA. However, most of the existing electrocardiogram (ECG) monitoring devices are bulky, cost expensive and lack arrhythmia detection and classification system. This paper proposes a front-end on-board graphical interface design of System-on-Chip (SoC) based arrhythmia detector which can be used as a first screening device for cardiac disease patient. The system consists of a knowledge-based arrhythmia classifier which is able to identify three types of arrhythmias which are ventricular fibrillation (VF), premature ventricular contractions (PVCs) and second-degree atrioventricular (AV) block. The system has been evaluated and benchmarked with ECG data from MIT-BIH arrhythmia database. The results show that its accuracy is up to 99.25% with a computation time of 6.385 seconds. It is highly portable and relatively inexpensive for installation in small clinics and home monitoring

    Probing Lepton Flavor Violation at Future Colliders

    Full text link
    Supersymmetric theories with significant lepton flavor violation have e~\tilde{e} and μ~\tilde{\mu} nearly degenerate. In this case, pair production of e~+e~\tilde{e}^+ \tilde{e}^- and μ~+μ~\tilde{\mu}^+ \tilde{\mu}^- at LEPII and at the Next Linear Collider leads to the phenomenon of slepton oscillations, which is analogous to neutrino oscillations. The reach in Δm2\Delta m^2 and sin22θ\sin^2 2 \theta gives a probe of lepton flavor violation which is significantly more powerful than the current bounds from rare processes, such as μeγ\mu \to e\gamma. Polarizable ee^- beams and the eee^-e^- mode at the NLC are found to be promising options.Comment: 10 pages, 3 figures, RevTeX, minor corrections, published versio

    Spin- and charge-density waves in the Hartree-Fock ground state of the two-dimensional Hubbard model

    Full text link
    The ground states of the two-dimensional repulsive Hubbard model are studied within the unrestricted Hartree-Fock (UHF) theory. Magnetic and charge properties are determined by systematic, large-scale, exact numerical calculations, and quantified as a function of electron doping hh. In the solution of the self-consistent UHF equations, multiple initial configurations and simulated annealing are used to facilitate convergence to the global minimum. New approaches are employed to minimize finite-size effects in order to reach the thermodynamic limit. At low to moderate interacting strengths and low doping, the UHF ground state is a linear spin-density wave (l-SDW), with antiferromagnetic order and a modulating wave. The wavelength of the modulating wave is 2/h2/h. Corresponding charge order exists but is substantially weaker than the spin order, hence holes are mobile. As the interaction is increased, the l-SDW states evolves into several different phases, with the holes eventually becoming localized. A simple pairing model is presented with analytic calculations for low interaction strength and small doping, to help understand the numerical results and provide a physical picture for the properties of the SDW ground state. By comparison with recent many-body calculations, it is shown that, for intermediate interactions, the UHF solution provides a good description of the magnetic correlations in the true ground state of the Hubbard model.Comment: 13 pages, 17 figure, 0 table

    Little Hierarchy, Little Higgses, and a Little Symmetry

    Full text link
    Little Higgs theories are an attempt to address the little hierarchy problem, i.e., the tension between the naturalness of the electroweak scale and the precision measurements showing no evidence for new physics up to 5-10 TeV. In little Higgs theories, the Higgs mass-squareds are protected to the one-loop order from the quadratic divergence. This allows the cutoff to be raised up to \~10 TeV, beyond the scales probed by the precision data. However, strong constraints can still arise from the contributions of the new TeV scale particles and hence re-introduces the fine-tuning problem. In this paper we show that a new symmetry, denoted as T-parity, under which all heavy gauge bosons and scalar triplets are odd, can remove all the tree-level contributions to the electroweak observables and therefore makes the little Higgs theories completely natural. The T-parity can be manifestly implemented in a majority of little Higgs models by following the most general construction of the low energy effective theory a la Callan, Coleman, Wess and Zumino. In particular, we discuss in detail how to implement the T-parity in the littlest Higgs model based on SU(5)/SO(5). The symmetry breaking scale f can be even lower than 500 GeV if the contributions from the unknown UV physics at the cutoff are somewhat small. The existence of TT-parity has drastic impacts on the phenomenology of the little Higgs theories. The T-odd particles need to be pair-produced and will cascade down to the lightest T-odd particle (LTP) which is stable. A neutral LTP gives rise to missing energy signals at the colliders which can mimic supersymmetry. It can also serve as a good dark matter candidate.Comment: 20 pages, 2 figures, RevTeX; v2: Yukawa sector in the SU(5)/SO(5) model slightly modified. Also added comments on the Dirac mass term for the fermionic doublet partner; v3: clarifying comments on the modified Yukawa sector. version to appear on JHE

    Bounds on Universal Extra Dimensions

    Get PDF
    We show that the bound from the electroweak data on the size of extra dimensions accessible to all the standard model fields is rather loose. These "universal" extra dimensions could have a compactification scale as low as 300 GeV for one extra dimension. This is because the Kaluza-Klein number is conserved and thus the contributions to the electroweak observables arise only from loops. The main constraint comes from weak-isospin violation effects. We also compute the contributions to the S parameter and the ZbbˉZb\bar{b} vertex. The direct bound on the compactification scale is set by CDF and D0 in the few hundred GeV range, and the Run II of the Tevatron will either discover extra dimensions or else it could significantly raise the bound on the compactification scale. In the case of two universal extra dimensions, the current lower bound on the compactification scale depends logarithmically on the ultra-violet cutoff of the higher dimensional theory, but can be estimated to lie between 400 and 800 GeV. With three or more extra dimensions, the cutoff dependence may be too strong to allow an estimate.Comment: 22 pages, Latex, 1 eps figure. Published version; minor correction in the Kaluza-Klein decompositio

    Dynamical Electroweak Breaking and Latticized Extra Dimensions

    Get PDF
    Using gauge invariant effective Lagrangians in 1+3 dimensions describing the Standard Model in 1+4 dimensions, we explore dynamical electroweak symmetry breaking. The Top Quark Seesaw model arises naturally, as well as the full CKM structure. We include a discussion of effects of warping, and indicate how other dynamical schemes may also be realized.Comment: 30 pages, 12 figure

    Background Independent Quantum Mechanics and Gravity

    Full text link
    We argue that the demand of background independence in a quantum theory of gravity calls for an extension of standard geometric quantum mechanics. We discuss a possible kinematical and dynamical generalization of the latter by way of a quantum covariance of the state space. Specifically, we apply our scheme to the problem of a background independent formulation of Matrix Theory.Comment: 9 pages, LaTe

    The changing of the guard: groupwork with people who have intellectual disabilities

    Get PDF
    This paper considers the impact of service systems on group activities. It describes an inter-professional groupwork project facilitated by a social worker and a community nurse. The project provided an emancipatory experience for a group of adults who had intellectual disabilities. The group was charged with the task of reviewing and updating the recruitment and interview processes used by a 'Learning Disability Partnership Board', when employing new support workers. The paper begins with a brief history of intellectual disability and provides a context to the underpinning philosophical belief that people should be encouraged and supported to inhabit valued social roles no matter what disability they may have. It then identifies the ways in which the sponsoring health, education and social care services impacted on the creation and development of a groupwork project. It might have been expected that the nature of the intellectual disability would have been the major influence on group process. However the paper reveals that organisational constraints had a significant impact on group functioning. Issues including, staffing budgets and transport contracts impacted on group process and function. The results of the project show how, with adequate support, people with intellectual disability can make important decisions that have long-reaching impacts on the services

    Magnetothermopower and Magnetoresistivity of RuSr2Gd1-xLaxCu2O8 (x=0, 0.1)

    Full text link
    We report measurements of magnetothermopower and magnetoresistivity as a function of temperature on RuSr2Gd1-xLaxCu2O8 (x = 0, 0.1). The normal-state thermopower shows a dramatic decrease after applying a magnetic field of 5 T, whereas the resistivity shows only a small change after applying the same field. Our results suggest that RuO2 layers are conducting and the magnetic field induced decrease of the overall thermopower is caused by the decrease of partial thermopower decrease associated with the spin entropy decrease of the carriers in the RuO2 layers.Comment: 21 pages, 6 figure
    corecore