5,489 research outputs found

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Penetration depth study of LaOs4_4Sb12_{12}: Multiband s-wave superconductivity

    Full text link
    We measured the magnetic penetration depth λ(T)\lambda(T) in single crystals of LaOs4_{4}Sb12_{12} (TcT_c=0.74 K) down to 85 mK using a tunnel diode oscillator technique. The observed low-temperature exponential dependence indicates a s-wave gap. Fitting the low temperature data to BCS s-wave expression gives the zero temperature gap value Δ(0)=(1.34±0.07)kBTc\Delta (0)= (1.34 \pm 0.07) k_B T_c which is significantly smaller than the BCS value of 1.76kBTck_B T_c. In addition, the normalized superfluid density ρ(T)\rho(T) shows an unusually long suppression near TcT_c, and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure

    Extranatural Inflation

    Get PDF
    We present a new model of inflation in which the inflaton is the extra component of a gauge field in a 5d theory compactified on a circle. The chief merit of this model is that the potential comes only from non-local effects so that its flatness is not spoiled by higher dimensional operators or quantum gravity corrections. The model predicts a red spectrum (n ~ 0.96) and a significant production of gravitational waves (r ~ 0.11). We also comment on the relevance of this idea to quintessence.Comment: 4 pages. Minor corrections and references added. Accepted for PR

    Probing the superconducting gap symmetry of PrRu4_{4}Sb12_{12}: A comparison with PrOs4_{4}Sb12_{12}

    Full text link
    We report measurements of the magnetic penetration depth λ\lambda in single crystals of PrRu4_{4}Sb12_{12} down to 0.1 K. Both λ\lambda and superfluid density ρs\rho_{s} exhibit an exponential behavior for TT << 0.5TcT_{c}, with parameters Δ\Delta(0)/\textit{k}B_{B}\textit{T}c_{c} = 1.9 and λ(0)\lambda(0) = 2900 \AA. The value of Δ\Delta(0) is consistent with the specific-heat jump value of ΔC/γTc\Delta C/\gamma T_{c} = 1.87 measured elsewhere, while the value of λ(0)\lambda(0) is consistent with the measured value of the electronic heat-capacity coefficient γ\gamma. Our data are consistent with PrRu4_{4}Sb12_{12} being a moderate-coupling, fully-gapped superconductor. We suggest experiments to study how the nature of the superconducting state evolves with increasing Ru substitution for Os

    Field-angle Dependence of the Zero-Energy Density of States in the Unconventional Heavy-Fermion Superconductor CeCoIn5

    Full text link
    Field-angle dependent specific heat measurement has been done on the heavy-fermion superconductor CeCoIn5 down to ~ 0.29 K, in a magnetic field rotating in the tetragonal c-plane. A clear fourfold angular oscillation is observed in the specific heat with the minima (maxima) occurring along the [100] ([110]) directions. Oscillation persists down to low fields H << Hc2, thus directly proving the existence of gap nodes. The results indicate that the superconducting gap symmetry is most probably of dxy type.Comment: 8 pages, 3 figures, to be published in J. Phys. Condens. Matte

    Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates

    Get PDF
    Within the t-t'-J model, the electron spectrum and quasiparticle dispersion in doped bilayer cuprates in the normal state are discussed by considering the bilayer interaction. It is shown that the bilayer interaction splits the electron spectrum of doped bilayer cuprates into the bonding and antibonding components around the (π,0)(\pi,0) point. The differentiation between the bonding and antibonding components is essential, which leads to two main flat bands around the (π,0)(\pi,0) point below the Fermi energy. In analogy to the doped single layer cuprates, the lowest energy states in doped bilayer cuprates are located at the (π/2,π/2)(\pi/2,\pi/2) point. Our results also show that the striking behavior of the electronic structure in doped bilayer cuprates is intriguingly related to the bilayer interaction together with strong coupling between the electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and discussions, accepted for publication in Phys. Rev.

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Microscopic Approach to Magnetism and Superconductivity of ff-Electron Systems with Filled Skutterudite Structure

    Full text link
    In order to gain a deep insight into ff-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. For each case of nn=1\sim13, where nn is the number of ff electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of ff electron. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the jj-jj coupling scheme by using the NRG method. Then, we construct an orbital degenerate Hubbard model based on the jj-jj coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of nn=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl

    Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors

    Full text link
    Surface bound states in a discrete-lattice model of a dx2y2d_{x^2 - y^2} cuprate superconductor are shown to be, in general, coherent superpositions of an incoming excitation and more than one outgoing excitation, and a simple graphical construction based on a surface Brillouin zone is developed to describe their nature. In addition, a momentum-dependent lifetime contribution to the width of these bound states as observed in tunneling experiments is derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte

    Doublet-Triplet Splitting and Fermion Masses with Extra Dimensions

    Get PDF
    The pseudo-Goldstone boson mechanism for the ``doublet-triplet splitting'' problem of the grand unified theory can be naturally implemented in the scenario with extra dimensions and branes. The two SU(6) global symmetries of the Higgs sector are located on two separate branes while the SU(6) gauge symmetry is in the bulk. After including several vector-like fields in the bulk, and allowing the most general interactions with their natural strength (including the higher dimensional ones which may be generated by gravity) which are consistent with the geometry, a realistic pattern of the Standard Model fermion masses and mixings can be naturally obtained without any flavor symmetry. Neutrino masses and mixings required for the solar and atmospheric neutrino problems can also be accommodated. The geometry of extra dimensions and branes provides another way to realize the absence of certain interactions (as required in the pseudo-Goldstone boson mechanism) or the smallness of some couplings (e.g., the Yukawa couplings between the fermions and the Higgs bosons), in addition to the usual symmetry arguments.Comment: 16 pages, 4 figures, LaTeX, references and some clarifying remarks added, to be published in Phys. Rev.
    corecore