5,489 research outputs found
A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection
The purpose of this paper is to apply characteristics of residual stress that
causes cantilever beams to bend for manufacturing a micro-structured gas flow
sensor. This study uses a silicon wafer deposited silicon nitride layers,
reassembled the gas flow sensor with four cantilever beams that perpendicular
to each other and manufactured piezoresistive structure on each
micro-cantilever by MEMS technologies, respectively. When the cantilever beams
are formed after etching the silicon wafer, it bends up a little due to the
released residual stress induced in the previous fabrication process. As air
flows through the sensor upstream and downstream beam deformation was made,
thus the airflow direction can be determined through comparing the resistance
variation between different cantilever beams. The flow rate can also be
measured by calculating the total resistance variations on the four
cantilevers.Comment: Submitted on behalf of EDA Publishing Association
(http://irevues.inist.fr/handle/2042/16838
Penetration depth study of LaOsSb: Multiband s-wave superconductivity
We measured the magnetic penetration depth in single crystals of
LaOsSb (=0.74 K) down to 85 mK using a tunnel diode
oscillator technique. The observed low-temperature exponential dependence
indicates a s-wave gap. Fitting the low temperature data to BCS s-wave
expression gives the zero temperature gap value which is significantly smaller than the BCS value of 1.76. In
addition, the normalized superfluid density shows an unusually long
suppression near , and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure
Extranatural Inflation
We present a new model of inflation in which the inflaton is the extra
component of a gauge field in a 5d theory compactified on a circle. The chief
merit of this model is that the potential comes only from non-local effects so
that its flatness is not spoiled by higher dimensional operators or quantum
gravity corrections. The model predicts a red spectrum (n ~ 0.96) and a
significant production of gravitational waves (r ~ 0.11). We also comment on
the relevance of this idea to quintessence.Comment: 4 pages. Minor corrections and references added. Accepted for PR
Probing the superconducting gap symmetry of PrRuSb: A comparison with PrOsSb
We report measurements of the magnetic penetration depth in single
crystals of PrRuSb down to 0.1 K. Both and superfluid
density exhibit an exponential behavior for 0.5, with
parameters (0)/\textit{k}\textit{T} = 1.9 and
= 2900 \AA. The value of (0) is consistent with the specific-heat jump
value of = 1.87 measured elsewhere, while the value of
is consistent with the measured value of the electronic
heat-capacity coefficient . Our data are consistent with
PrRuSb being a moderate-coupling, fully-gapped superconductor. We
suggest experiments to study how the nature of the superconducting state
evolves with increasing Ru substitution for Os
Field-angle Dependence of the Zero-Energy Density of States in the Unconventional Heavy-Fermion Superconductor CeCoIn5
Field-angle dependent specific heat measurement has been done on the
heavy-fermion superconductor CeCoIn5 down to ~ 0.29 K, in a magnetic field
rotating in the tetragonal c-plane. A clear fourfold angular oscillation is
observed in the specific heat with the minima (maxima) occurring along the
[100] ([110]) directions. Oscillation persists down to low fields H << Hc2,
thus directly proving the existence of gap nodes. The results indicate that the
superconducting gap symmetry is most probably of dxy type.Comment: 8 pages, 3 figures, to be published in J. Phys. Condens. Matte
Doping and temperature dependence of electron spectrum and quasiparticle dispersion in doped bilayer cuprates
Within the t-t'-J model, the electron spectrum and quasiparticle dispersion
in doped bilayer cuprates in the normal state are discussed by considering the
bilayer interaction. It is shown that the bilayer interaction splits the
electron spectrum of doped bilayer cuprates into the bonding and antibonding
components around the point. The differentiation between the bonding
and antibonding components is essential, which leads to two main flat bands
around the point below the Fermi energy. In analogy to the doped
single layer cuprates, the lowest energy states in doped bilayer cuprates are
located at the point. Our results also show that the striking
behavior of the electronic structure in doped bilayer cuprates is intriguingly
related to the bilayer interaction together with strong coupling between the
electron quasiparticles and collective magnetic excitations.Comment: 9 pages, 4 figures, updated references, added figures and
discussions, accepted for publication in Phys. Rev.
Janus monolayers of transition metal dichalcogenides.
Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements
Microscopic Approach to Magnetism and Superconductivity of -Electron Systems with Filled Skutterudite Structure
In order to gain a deep insight into -electron properties of filled
skutterudite compounds from a microscopic viewpoint, we investigate the
multiorbital Anderson model including Coulomb interactions, spin-orbit
coupling, and crystalline electric field effect. For each case of
=113, where is the number of electrons per rare-earth ion, the
model is analyzed by using the numerical renormalization group (NRG) method to
evaluate magnetic susceptibility and entropy of electron. In order to make
further step to construct a simplified model which can be treated even in a
periodic system, we also analyze the Anderson model constructed based on the
- coupling scheme by using the NRG method. Then, we construct an orbital
degenerate Hubbard model based on the - coupling scheme to investigate
the mechanism of superconductivity of filled skutterudites. In the 2-site
model, we carefully evaluate the superconducting pair susceptibility for the
case of =2 and find that the susceptibility for off-site Cooper pair is
clearly enhanced only in a transition region in which the singlet and triplet
ground states are interchanged.Comment: 14 pages, 11 figures, Typeset with jpsj2.cl
Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors
Surface bound states in a discrete-lattice model of a cuprate
superconductor are shown to be, in general, coherent superpositions of an
incoming excitation and more than one outgoing excitation, and a simple
graphical construction based on a surface Brillouin zone is developed to
describe their nature. In addition, a momentum-dependent lifetime contribution
to the width of these bound states as observed in tunneling experiments is
derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte
Doublet-Triplet Splitting and Fermion Masses with Extra Dimensions
The pseudo-Goldstone boson mechanism for the ``doublet-triplet splitting''
problem of the grand unified theory can be naturally implemented in the
scenario with extra dimensions and branes. The two SU(6) global symmetries of
the Higgs sector are located on two separate branes while the SU(6) gauge
symmetry is in the bulk. After including several vector-like fields in the
bulk, and allowing the most general interactions with their natural strength
(including the higher dimensional ones which may be generated by gravity) which
are consistent with the geometry, a realistic pattern of the Standard Model
fermion masses and mixings can be naturally obtained without any flavor
symmetry. Neutrino masses and mixings required for the solar and atmospheric
neutrino problems can also be accommodated. The geometry of extra dimensions
and branes provides another way to realize the absence of certain interactions
(as required in the pseudo-Goldstone boson mechanism) or the smallness of some
couplings (e.g., the Yukawa couplings between the fermions and the Higgs
bosons), in addition to the usual symmetry arguments.Comment: 16 pages, 4 figures, LaTeX, references and some clarifying remarks
added, to be published in Phys. Rev.
- …