549 research outputs found
Soft Methodology for Cost-and-error Sensitive Classification
Many real-world data mining applications need varying cost for different
types of classification errors and thus call for cost-sensitive classification
algorithms. Existing algorithms for cost-sensitive classification are
successful in terms of minimizing the cost, but can result in a high error rate
as the trade-off. The high error rate holds back the practical use of those
algorithms. In this paper, we propose a novel cost-sensitive classification
methodology that takes both the cost and the error rate into account. The
methodology, called soft cost-sensitive classification, is established from a
multicriteria optimization problem of the cost and the error rate, and can be
viewed as regularizing cost-sensitive classification with the error rate. The
simple methodology allows immediate improvements of existing cost-sensitive
classification algorithms. Experiments on the benchmark and the real-world data
sets show that our proposed methodology indeed achieves lower test error rates
and similar (sometimes lower) test costs than existing cost-sensitive
classification algorithms. We also demonstrate that the methodology can be
extended for considering the weighted error rate instead of the original error
rate. This extension is useful for tackling unbalanced classification problems.Comment: A shorter version appeared in KDD '1
Investigation on the framework of heritage preservation in the context of sustainable development
Thesis (B.Sc)--University of Hong Kong, 2007.Includes bibliographical references (p. 79-85).published_or_final_versio
How do students from different disciplines perceive the concept of “data”?: A visual elicitation method
Transforming the iSquare draw-and-write technique into the dSquare draw-and-tell approach, we conducted synchronous online visual-elicitation inter-views with 37 college students in six different disciplines to examine how they perceived the concept of “data.” The preliminary findings showed that students across disciplines tend to use group diagrams to present ICT and print materials in their dSquares. When explaining their drawings, students typically relate to functional purposes in academic contexts. While students typically use data in coursework or other work-related contexts in a positive way, students in different disciplines consider data in different original forms and use different types of metaphors to express the concept of data. While science students tend to include files or lab tools and describe data processing through the tools, humanities and social science students tend to include texts or secondary sources and describe data processing or application through personal thinking. Future research suggestions are provided based on the findings
Lasing on nonlinear localized waves in curved geometry
The use of geometrical constraints opens many new perspectives in photonics
and in fundamental studies of nonlinear waves. By implementing surface
structures in vertical cavity surface emitting lasers as manifolds for curved
space, we experimentally study the impacts of geometrical constraints on
nonlinear wave localization. We observe localized waves pinned to the maximal
curvature in an elliptical-ring, and confirm the reduction in the localization
length of waves by measuring near and far field patterns, as well as the
corresponding dispersion relation. Theoretically, analyses based on a
dissipative model with a parabola curve give good agreement remarkably to
experimental measurement on the transition from delocalized to localized waves.
The introduction of curved geometry allows to control and design lasing modes
in the nonlinear regime.Comment: 6 pages, 6 figure
The Source Detection of 28 September 2018 Sulawesi Tsunami by Using Ionospheric GNSS Total Electron Content Disturbance
The 28 September 2018 magnitude Mw7.8 Palu, Indonesia earthquake (0.178° S, 119.840° E, depth 13 km) occurred at 10:02 UTC. The major earthquake triggered catastrophic liquefaction, landslides, and a near-field tsunami. The ionospheric total electron content (TEC) derived from records of 5 ground-based global navigation satellite system (GNSS) receivers is employed to detect tsunami traveling ionospheric disturbances (TTIDs). In total, 15 TTIDs have been detected. The ray-tracing and beamforming techniques are then used to find the TTID source location. The bootstrap method is applied in order to further explore the possible location of the tsunami source based on results of the two techniques, which show the beamforming technique has a slightly better performance on finding possible locations of the tsunami source. Meanwhile, the circle method is employed to examine tsunami signatures of the sea-surface height and video records, and find possible tsunami origin locations. The coincidence of the TTID source location and the tsunami location shows that the ionospheric TEC recorded by local ground-based GNSS receivers can be used to confirm the tsunami occurrence, find the tsunami location, and support the tsunami early warning
- …