1,448 research outputs found

    A WENO Algorithm of the Temperature and Ionization Profiles around a Point Source

    Full text link
    We develop a numerical solver for radiative transfer problems based on the weighted essentially nonoscillatory (WENO) scheme modified with anti-diffusive flux corrections, in order to solve the temperature and ionization profiles around a point source of photons in the reionization epoch. Algorithms for such simulation must be able to handle the following two features: 1. the sharp profiles of ionization and temperature at the ionizing front (I-front) and the heating front (T-front), and 2. the fraction of neutral hydrogen within the ionized sphere is extremely small due to the stiffness of the rate equations of atom processes. The WENO scheme can properly handle these two features, as it has been shown to have high order of accuracy and good convergence in capturing discontinuities and complicated structures in fluid as well as to be significantly superior over piecewise smooth solutions containing discontinuities. With this algorithm, we show the time-dependence of the preheated shell around a UV photon source. In the first stage the I-front and T-front are coincident, and propagate with almost the speed of light. In later stage, when the frequency spectrum of UV photons is hardened, the speeds of propagation of the ionizing and heating fronts are both significantly less than the speed of light, and the heating front is always beyond the ionizing front. In the spherical shell between the I- and T-fronts, the IGM is heated, while atoms keep almost neutral. The time scale of the preheated shell evolution is dependent on the intensity of the photon source. We also find that the details of the pre-heated shell and the distribution of neutral hydrogen remained in the ionized sphere are actually sensitive to the parameters used. The WENO algorithm can provide stable and robust solutions to study these details.Comment: 24 pages, 7 figures, accepted in New Astronom

    A WENO Algorithm for the Radiative Transfer and Ionized Sphere at Reionization

    Full text link
    We show that the algorithm based on the weighted essentially nonoscillatory (WENO) scheme with anti-diffusive flux corrections can be used as a solver of the radiative transfer equations. This algorithm is highly stable and robust for solving problems with both discontinuities and smooth solution structures. We test this code with the ionized sphere around point sources. It shows that the WENO scheme can reveal the discontinuity of the radiative or ionizing fronts as well as the evolution of photon frequency spectrum with high accuracy on coarse meshes and for a very wide parameter space. This method would be useful to study the details of the ionized patch given by individual source in the epoch of reionization. We demonstrate this method by calculating the evolution of the ionized sphere around point sources in physical and frequency spaces. It shows that the profile of the fraction of neutral hydrogen and the ionized radius are sensitively dependent on the intensity of the source.Comment: Elsart Latex file, 20 pages, 8 figures included, accepted for publication in New Astronom

    Higher rank numerical ranges of normal matrices

    Get PDF
    The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix AMnA \in M_n has eigenvalues a1,.˙.,ana_1, \..., a_n, then its higher rank numerical range Λk(A)\Lambda_k(A) is the intersection of convex polygons with vertices aj1,.˙.,ajnk+1a_{j_1}, \..., a_{j_{n-k+1}}, where 1j1<.˙.<jnk+1n1 \le j_1 < \... < j_{n-k+1} \le n. In this paper, it is shown that the higher rank numerical range of a normal matrix with mm distinct eigenvalues can be written as the intersection of no more than max{m,4}\max\{m,4\} closed half planes. In addition, given a convex polygon P{\mathcal P} a construction is given for a normal matrix AMnA \in M_n with minimum nn such that Λk(A)=P\Lambda_k(A) = {\mathcal P}. In particular, if P{\mathcal P} has pp vertices, with p3p \ge 3, there is a normal matrix AMnA \in M_n with nmax{p+k1,2k+2}n \le \max\left\{p+k-1, 2k+2 \right\} such that Λk(A)=P\Lambda_k(A) = {\mathcal P}.Comment: 12 pages, 9 figures, to appear in SIAM Journal on Matrix Analysis and Application

    21 cm Signals from Early Ionizing Sources

    Full text link
    We investigate the 21 cm signals from the UV ionizing sources in the reionization epoch. The formation and evolution of 21 cm emission and absorption regions depend essentially on the kinetics of photons in the physical and frequency spaces. To solve the radiative transfer equation, we use the WENO algorithm, which is effective to capture the sharp ionization profile and the cut-off at the front of light (r=ct)(r=ct) and to handle the small fraction of neutral hydrogen and helium in the ionized sphere. We show that a spherical shell of 21 cm emission and absorption will develop around a point source once the speed of the ionization front (I-front) is significantly lower than the speed of light. The 21 cm shell extends from the I-front to the front of light; its inner part is the emission region and its outer part is the absorption region. The 21 cm emission region depends strongly on the intensity, frequency-spectrum and life-time of the UV ionizing source. For a source of short life-time, no 21 cm emission region can be formed if the source dies out before the I-front speed is significantly lower than the speed of light. Yet, a 21 cm absorption region can form and develop even after the emission of the source ceases.Comment: 25 pages, 9 figures, accepted by Ap

    RF-thermal-structural-RF coupled analysis on the travelling wave disk-loaded accelerating structure

    Full text link
    Travelling wave (TW) disk-loaded accelerating structure is one of the key components in normal conducting (NC) linear accelerators, and has been studied for many years. In the design process, usually after the dimensions of each cell and the two couplers are finalized, the structure is fabricated and tuned, and then the whole structure characteristics can be measured by the vector network analyzer. Before the structure fabrication, the whole structure characteristics are less simulated limited by the available computer capability. In this paper, we described the method to do the RF-thermal-structural-RF coupled analysis on the TW disk-loaded structure with one single PC. In order to validate our method, we first analyzed and compared our RF simulation results on the 3m long BEPCII structure with the corresponding experimental results, which shows very good consistency. Finally, the RF-thermal-structure-RF coupled analysis results on the 1.35m long NSC KIPT linac accelerating structure are presented.Comment: 5 pages, 16 figures, Submitted to the Chinese Physics C (Formerly High Energy Physics and Nuclear Physics
    corecore