418 research outputs found

    Improved Compact Visibility Representation of Planar Graph via Schnyder's Realizer

    Full text link
    Let GG be an nn-node planar graph. In a visibility representation of GG, each node of GG is represented by a horizontal line segment such that the line segments representing any two adjacent nodes of GG are vertically visible to each other. In the present paper we give the best known compact visibility representation of GG. Given a canonical ordering of the triangulated GG, our algorithm draws the graph incrementally in a greedy manner. We show that one of three canonical orderings obtained from Schnyder's realizer for the triangulated GG yields a visibility representation of GG no wider than 22n4015\frac{22n-40}{15}. Our easy-to-implement O(n)-time algorithm bypasses the complicated subroutines for four-connected components and four-block trees required by the best previously known algorithm of Kant. Our result provides a negative answer to Kant's open question about whether 3n62\frac{3n-6}{2} is a worst-case lower bound on the required width. Also, if GG has no degree-three (respectively, degree-five) internal node, then our visibility representation for GG is no wider than 4n93\frac{4n-9}{3} (respectively, 4n73\frac{4n-7}{3}). Moreover, if GG is four-connected, then our visibility representation for GG is no wider than n1n-1, matching the best known result of Kant and He. As a by-product, we obtain a much simpler proof for a corollary of Wagner's Theorem on realizers, due to Bonichon, Sa\"{e}c, and Mosbah.Comment: 11 pages, 6 figures, the preliminary version of this paper is to appear in Proceedings of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Berlin, Germany, 200

    Electromagnetic Imaging for Inhomogeneous Dielectric Cylinder Buried in a Slab Medium

    Get PDF
    [[abstract]]The electromagnetic imaging of inhomogeneous dielectric cylinders buried in a slab medium is investigated. Dielectric cylinders of unknown permittivities are buried in second space and scattered a group of unrelated waves incident from first space where the scattered field is recorded. By proper arrangement of the various unrelated incident field, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. They also show that the permittivity distribution of the cylinders can be successfully reconstructed even when the permittivity is fairly large. Good reconstructed results are obtained even in the presence of additive Gaussian noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.[[notice]]補正完畢[[incitationindex]]EI[[booktype]]紙

    Image reconstruction of inhomogeneous biaxial dielectric cylinders buried in a slab medium

    Get PDF
    100學年度研究獎補助論文[[abstract]]The image reconstruction of inhomogeneous biaxial dielectric cylinders buried in a slab medium is investigated. A biaxial dielectric cylinder of unknown permittivities buried in a slab scatters a group of unrelated incident waves from outside. The scattered field is recorded outside the slab. By proper arrangement of the various unrelated incident fields, the difficulties of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given to demonstrate the capability of the inverse algorithm. Good reconstructed results are obtained even in the presence of additive Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Time Domain Image Reconstruction for a Buried 2D Homogeneous Dielectric Cylinder Using NU-SSGA

    Get PDF
    [[abstract]]This article presents an image reconstruction approach for a buried homogeneous cylinder with arbitrary cross-section in half space. The computational method combines the finite difference time domain (FDTD) method and non-uniform steady state genetic algorithm (NU-SSGA) to determine the shape and location of the subsurface scatterer with arbitrary shape. The FDTD-subgirdding technique is implemented for modeling the shape of the cylinder more closely. The inverse problem is reformulated into an optimization problem and the global searching scheme NU-SSGA with closed cubic-spline is then employed to search the parameter space. A set of representative numerical results is presented for demonstrating that the proposed approach is able to efficiently reconstruct the electromagnetic properties of homogeneous dielectric scatterer even when the initial guess is far from the exact one. In addition, the effects of Gaussian noises on imaging reconstruction are also investigated.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙

    Comparative Study of Some Population-based Optimization Algorithms on Inverse Scattering of a Two-Dimensional Perfectly Conducting Cylinder in Slab Medium

    Get PDF
    [[abstract]]The application of four techniques for the shape reconstruction of a 2-D metallic cylinder buried in dielectric slab medium by measured the cattered fields outside is studied in the paper. The finite-difference time-domain (FDTD) technique is employed for electromagnetic analyses for both the forward and inverse scattering problems, while the shape reconstruction problem is transformed into optimization one during the course of inverse scattering. Then, four techniques including asynchronous particle swarm optimization (APSO), PSO, dynamic differential evolution (DDE) and self-adaptive DDE (SADDE) are applied to reconstruct the location and shape of the 2-Dmetallic cylinder for comparative purposes. The statistical performances of these algorithms are compared. The results show that SADDE outperforms PSO, APSO and DDE in terms of the ability of exploring the optima. However, these results are considered to be indicative and do not generally apply to all optimization problems in electromagnetics.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Integrin-mediated membrane blebbing is dependent on the NHE1 and NCX1 activities.

    Get PDF
    Integrin-mediated signal transduction and membrane blebbing have been well studied to modulate cell adhesion, spreading and migration^1-6^. However, the relationship between membrane blebbing and integrin signaling has not been explored. Here we show that integrin-ligand interaction induces membrane blebbing and membrane permeability change. We found that sodium-proton exchanger 1 (NHE1) and sodium-calcium exchanger 1 (NCX1) are located in the membrane blebbing sites and inhibition of NHE1 disrupts membrane blebbing and decreases membrane permeability change. However, inhibition of NCX1 enhances cell blebbing to cause cell swelling which is correlated with an intracellular sodium accumulation induced by NHE17. These data suggest that sodium influx induced by NHE1 is a driving force for membrane blebbing growth, while sodium efflux induced by NCX1 in a reverse mode causes membrane blebbing retraction. Together, these data reveal a novel function of NHE1 and NCX1 in membrane permeability change and blebbing and provide the link for integrin signaling and membrane blebbing

    Patient-oriented simulation based on Monte Carlo algorithm by using MRI data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although Monte Carlo simulations of light propagation in full segmented three-dimensional MRI based anatomical models of the human head have been reported in many articles. To our knowledge, there is no patient-oriented simulation for individualized calibration with NIRS measurement. Thus, we offer an approach for brain modeling based on image segmentation process with <it>in vivo </it>MRI T1 three-dimensional image to investigate the individualized calibration for NIRS measurement with Monte Carlo simulation.</p> <p>Methods</p> <p>In this study, an individualized brain is modeled based on <it>in vivo </it>MRI 3D image as five layers structure. The behavior of photon migration was studied for this individualized brain detections based on three-dimensional time-resolved Monte Carlo algorithm. During the Monte Carlo iteration, all photon paths were traced with various source-detector separations for characterization of brain structure to provide helpful information for individualized design of NIRS system.</p> <p>Results</p> <p>Our results indicate that the patient-oriented simulation can provide significant characteristics on the optimal choice of source-detector separation within 3.3 cm of individualized design in this case. Significant distortions were observed around the cerebral cortex folding. The spatial sensitivity profile penetrated deeper to the brain in the case of expanded CSF. This finding suggests that the optical method may provide not only functional signal from brain activation but also structural information of brain atrophy with the expanded CSF layer. The proposed modeling method also provides multi-wavelength for NIRS simulation to approach the practical NIRS measurement.</p> <p>Conclusions</p> <p>In this study, the three-dimensional time-resolved brain modeling method approaches the realistic human brain that provides useful information for NIRS systematic design and calibration for individualized case with prior MRI data.</p
    corecore