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Image reconstruction of inhomogeneous
biaxial dielectric cylinders buried in a slab
medium

Chi Hsien Sun, Chien-Ching Chiu∗ and Chun Jen Lin
Electrical Engineering Department, Tamkang University, Tamsui, Taipei, Taiwai

Abstract. The image reconstruction of inhomogeneous biaxial dielectric cylinders buried in a slab medium is investigated. A
biaxial dielectric cylinder of unknown permittivities buried in a slab scatters a group of unrelated incident waves from outside.
The scattered field is recorded outside the slab. By proper arrangement of the various unrelated incident fields, the difficulties
of ill-posedness and nonlinearity are circumvented, and the permittivity distribution can be reconstructed through simple matrix
operations. The algorithm is based on the moment method and the unrelated illumination method. Numerical results are given
to demonstrate the capability of the inverse algorithm. Good reconstructed results are obtained even in the presence ofadditive
Gaussian random noise in measured data. In addition, the effect of noise on the reconstruction result is also investigated.

1. Introduction

In inverse scattering, one attempts to infer the profile of anobject from the measurement data collected
away from the scatterer. Needless to say, this is very important for a number of sensing and remote
sensing applications [1–13]. For instance, it finds applications in nondestructive testing, geophysical
probing, microwave and ultrasonic medical imaging, buried-object detection, radar imaging and target
identification. The two main difficulties for the inverse problems are highly ill-posed and nonlinearity. Ill-
posedness means that a small error in the measured field data may cause a large error in the reconstructed
result. For inverse scattering solved by discrete matrix equations, the ill-condition property of associated
matrices reflects the ill-posedness of inverse scattering.Ill-posedness may be caused by the natural
limitation for propagating waves to carry high spatial frequency information or by the limited ability of
the reconstruction algorithm to make efficient use of the measured data. This problem is also ill-posed
due to the face that the kernel of the integral is a smoothing function. Another one is nonlinearity. The
inverse scattering problem is nonlinear in nature because in involves the product of two unknowns, the
electrical property of object, and the electric field withinthe object. Especially in inverse problems of
a slab medium, the interaction between the interface of the three layers and the object, which leads to
the complicated Green’s function for this three layer problem. Owing to the difficulties in computing
the Green’s function by a numerical method, the problem of inverse scattering in a slab has seldom
been tackled. Most papers emphasize on the reconstruction of the second layer profile in the three
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Fig. 1. Geometry of problem in the (x,y) plane.

layer structures [11–14]. However, only a few papers deal with the reconstruction of buried perfectly
conducting objects in the three layer structures [15,16].

At the same time, advanced composite materials are increasingly popular in industrial and military
application due to their superior properties in strength and stiffness. The electromagnetic inverse
scattering of advanced composite materials has been a subject of considerable importance in various area
of technology. However, the composite materials are electrically anisotropic. The permittivity of these
materials depends on the chosen coordinates. This problem is more difficult and complex than that of
isotropic materials. To the best of our knowledge, there is still no investigation on the electromagnetic
imaging of inhomogeneous dielectric cylinders buried in a slab medium.

In this paper, the inverse scattering of buried inhomogeneous biaxial dielectric cylinders is investigated.
An efficient algorithm is proposed to reconstruct the permittivity distribution of the objects by using only
the scattered field measured outside. The algorithm is basedon the unrelated illumination method [9,17].
In Section 2, the theoretical formulation for electromagnetic inverse scattering is presented. Numerical
results for objects of different permittivity distributions are given in Section 3. Finally, conclusions are
drawn in Section 4.

2. Theoretical formulation

2.1. Direct problem

Let us consider biaxial dielectric cylinders buried in a lossless homogeneous three-layer background
as shown in Fig. 1, whereεi i = 1, 2, 3, denote the permittivities in each region. The permeability
is µ0 for all material including the scatterers. The axis of the buried cylinder is the z-axis; that is, the
properties of the scatterer may vary with the transverse coordinates only. The permittivity tensors̄̄εr of
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the dielectric objects are represented by diagonal matrix in the Cartesian coordinate system

¯̄εr (x, y) =





εa (x, y) 0 0
0 εb (x, y) 0
0 0 εc (x, y)





xyz

(1)

The object is illuminated by the following two different polarized incident waves.
1. TM Waves: A group of unrelated incident wave with electricfield parallel to the z-axis (i.e.,

transverse magnetic) is illuminated upon the scatterers. Owing to the interface between region 1 and 2,
the incident waves generate two waves that would exist in theabsence of the scatterer: reflected waves
(for y > a) and transmitted waves (fory < −a). Let the unperturbed field be represented by
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Then the internal total electric field inside the biaxial object,
⇀
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z(x, y)]ẑ, can be expressed by the following integral equation:
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The scattered field,
⇀
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where
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Hereki denotes the wave number in region i.G(x, y;x′, y′) is the Green’s function, which can be obtained

by the Fourier transform [2].H(2)
0 is the Hankel function of the second kind of order 0. For numerical

implementation of Green’s function, we might face some difficulties in calculating this function. This
Green’s function is in the form of an improper integral, which must be evaluated numerically. However,
the integral converges very slowly when(x, y) and(x′, y′) approach the interfacey = a. Fortunately
we find that the integral inG1s, G2s andG3s may be rewritten as a closed-form term plus a rapidly
converging integral [2]. Thus the whole integral in the Green’s function can be calculated efficiently.

2. TE Waves: A group of unrelated incident wave with magneticfield parallel to the z-axis (i.e.,
transverse electric) is illuminated upon the object. Owingto the interface, the incident plane wave
generates three waves that would exist in the absence of the conducting object. Let the unperturbed field
be represented by
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(x, y)ŷ, a > y > −a,

(

Ei
x

)

3
(x, y)x̂ +

(

Ei
y

)

3
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Owing to the coupling betweenEx andEy, the equations governing the result total field in the TE case
are more complicated than those in the TM case. By using Hertzvectorial potential techniques [18], the
internal total electric field
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x + Es

x)x̂ + (Ei
y + Es

y)ŷ
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For the direct problem, the scattered field is computed by giving the permittivity distribution of the
biaxial objects buried in a slab medium. This can be achievedby using Eq. (3) to solve the total field
inside the object̄E and calculatingĒs by Eq. (4) for the TM waves. Similarly, this can be achieved by
using Eqs (7) and (8) to solve the total field inside the objectĒ and calculatingĒs by Eqs (9) and (10)
for the TE waves. For numerical implementation of the directproblem, the dielectric objects are divided
into N sufficient small cells. Thus the permittivity and the total field within each cell can be taken as
constants. Letεan, εbn andεcn denote the x, y and z component of relative permittivity in the nth cell.
Then the moment method is used to solve Eqs (3), (4), and Eqs (7)–(10) with a pulse basis function for
expansion and point matching for testing [19]. Thus the following matrix equations can be obtained:
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where (Ei
x), (Ei

y), and (Ei
z) represent theN -element incident field column vectors and, (Ex), (Ey), and

(Ez) are theN -element total field column vectors. (Es
x) , (Es

y), and (Es
z ) denote the M-element scattered

field column vectors. Here M is the number of measurement points. The matrices [G2], [G3], [G4],
and [G5] areN × N square matrices. [G1], [G6], [G7], and [G8] areM × N matrices. The element
in matrices [Gi], i = 1, 2, 3. . . 8 can be obtained by tedious mathematic manipulation (see Appendix).
[τa],[τb] and[τc] areN ×N diagonal matrixes whose diagonal element are formed from the permittivities
of each cell minus one. [I] is a identityN ×N matrix. We can solve the direct problem for the TM case
by using Eqs (11) and (12). Similarly, the direct problem forTE case can be solved by using Eqs (13)
and (14).
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2.2. Inverse problem

We consider the following inverse problem: the permittivity distribution of the biaxial dielectric
objects is to be computed by the knowledge of the scattered field measured in region 1. Note that the
only unknown permittivities areεc(r) for the TM case, and similarly the only unknown permittivities
areεa(r) andεb(r) for the TE case. In the inversion procedure, we chooseN different incident column
vectors for the TM case and 2N different incident column vectors for the TE case. Then Eqs (11)–(14)
can be expressed as

[Ei
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]
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Then [τc] and [τt] can be found by solving the following equations:
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From Eq. (19), all the diagonal elements in the matrix [τc] can be determined by comparing the element
with the same subscripts, which may be any row of both[Ψz] and[Φz]:

(τc)nn =
(Φz)mn

(Ψz)mn

(21)

Similarly, from Eq. (20),

(τa)nn =
(Φt)mn

(Ψt)mn

, n 6 N (22)

or

(τb)(n−N)(n−N) =
(Φt)mn

(Ψt)mn

, n > N + 1 (23)

Note that there are a total of M possible values for each element of τa, τb, andτc. Therefore, the average
value of these M data is computed and chosen as final reconstruction result in the simulation.

In the above derivation, the key problem is that the incidentmatrices[Ei
z] and [Ei

t ] must not be a
singular matrix, i.e., all the incident column vectors thatform the[Ei

z] and[Ei
t ] matrices, must be linearly

unrelated. Thus, if the object is illuminated by a group of unrelated incident waves, it is possible to
reconstruct the permittivity distribution of the objects.Note that when the number of cells becomes very
large; it is difficult to make such a great number of independent measurements. In such a case, some
regularization methods must be used to overcome the ill-posedness.

3. Numerical results

In this section, we report some numerical results obtained by computer simulations using the method
described in the Section 2. Let us Consider a lossless three-layer structure (σ1 = σ2 = σ3 = 0) and
the width of the second layer is 0.2 m. The permittivity in each region is characterized by,ε1 = ε0,
ε2 = 2.25ε0 andε3 = ε0 respectively, as shown in Fig. 1. The frequency of the incident wave is chosen
as 3GHz. and the number of illuminations is the same as that ofcells. The incident waves are generated
by numerous groups of radiators operated simultaneously.

Each group of radiators is restricted to transmit a narrow-beamwidth pattern that can be implemented
by antenna array techniques. By changing the beam directionand tuning the phase of each group of
radiators, one can focus all the incident beams in turn at each cell of the object. This procedure is named
“beam focusing” [9]. Note that this focusing should be set when the scatterer is absent. Clearly, an
incident matrix formed in this way is diagonally dominant and its inverse matrix exists. The transmitting
antenna array has 1340 elements in order to achieve the EM wave of beamwidth 0.0176◦, which is
required to focus on the desired cell of 0.25cm for the cylinder in region 2 for the case of 3GHz assumed
in this study. The spacing of the equally separated array elements isλ

2 , and the antenna array is set 200 cm
(20λ) away from the interface between region1 and region2 to illuminate to scatterer. The measurement
is taken from 0.4 m to−0.4 m in region 1 at equal spacing. The number of measurement points is set to be
9 for each illumination. For avoiding trivial inversion of finite dimensional problems, the discretization
number for the direct problem is four times that for the inverse problem in our numerical simulation.

In the first example, the buried cylinder with a 62.5 mm× 10 mm rectangular cross section is discretized
into 25× 4 cells, and the corresponding dielectric permittivities are plotted in Fig. 2. The model is
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(a)

(b)

(c)

)

Fig. 2. Original relative permittivity distribution for example 1, (a)εa (x, y), (b)εb (x, y), (c)εc (x, y).
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(a)

(b)

(c)

Fig. 3. Reconstructed relative permittivity distributionfor example 1, (a)εa (x, y), (b)εb (x, y), (c)εc (x, y).
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(a)

(b)

(c)

Fig. 4. Original relative permittivity distribution for example 2, (a)εa (x, y), (b)εb (x, y), (c)εc (x, y).
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(a)

(b)

(c)

Fig. 5. Reconstructed relative permittivity distributionfor example 2, (a)εa (x, y), (b)εb (x, y), (c)εc (x, y).
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Fig. 6. Reconstructed error as a function of noise level for example 1.

characterized by simple step distribution of permittivity. Each cell has 2.5 mm× 2.5 mm cross-sections.
The reconstructed permittivity distributions of the object are plotted in Fig. 3. The root-mean-square
(R.M.S.) error is about 1.2 %, 0.8% and 0.5 % for the dielectric permittivityε1, ε2 andε3, receptively.
It is clear that the reconstruction is good. It is also found the errors for large permittivities are more
significant.

In the second example, the buried cylinder with a 27.6 mm× 27.6 mm square cross section is
discretized into 12× 12 cells, and the corresponding dielectric permittivitiesare plotted in Fig. 4. Each
cell has 2.3 mm× 2.3 mm cross-sections. The reconstructed permittivity distributions of the object are
plotted in Fig. 5. The R.M.S. error is about 1%, 1% and 1.1% forthe dielectric permittivityεa, εb andεc,
respectively. We can see the reconstruction is also good.

To investigate the effects of noise, we add to each complex scattered field a quantity b+cj, where b
and c are independent random numbers having a Gaussian distribution over 0 to the noise level times the
R.M.S. value of the scattered field. The noise levels appliedare 10−5, 10−4, 10−3, 10−2, and 10−1 for
the simulations. The numerical results for examples 1 and 2 are plotted in Figs 6 and 7, respectively.
They show the effect of noise is tolerable for noise levels below 1%.

Our method depends on the condition number of[Ei
z] and[Ei

t ]; that is, on having N and 2N unrelated
measurements. The procedure will generally not work when the number of unknowns gets very large.
This is due to the fact that it is difficult to make such a great number of measurements and make them
all unrelated. As a result, the condition number of[Ei

z ] and[Ei
t ] will become large while the number of

unknowns is very large. In such a case, the regularization method should be employed to overcome the
ill-posedness. For instance, the pseudoinverse transformtechniques [8] can be applied for the inversion
of the[Ei

z] and[Ei
t ] matrix.
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Fig. 7. Reconstructed error as a function of noise level for example 2.

4. Conclusions

An efficient algorithm for reconstructing the permittivitydistribution of biaxial dielectric cylinders
buried in a slab medium by the knowledge of the scattered fieldmeasured outside has been proposed.
By properly arranging the direction and the polarization ofvarious unrelated waves, the difficulty of
ill-posedness and nonlinearity is avoided. Thus, the permittivity distribution can be obtained by simple
matrix operations. The moment method has been used to transform a set of integral equations into
matrix form. Then these matrix equations are solved by the unrelated illumination method. Numerical
simulation for imaging the permittivity distribution of a buried biaxial dielectric object has been carried
out and good reconstruction has been obtained even in the presence of random noise in measured data.
This algorithm is very effective and efficient, since no iteration is required.

Appendix

The element in the matrix [G1] for TM case can be written as

(G1)mn =

[

k2
2 ·

∫∫

cell n

G1s

(

x, y;x′, y′
)

dx′dy′

]

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym
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where (xm, ym) is the observation point located in the center of the mth cell. For a sufficient small cell,
we can replace the cell by a circular cell with the same cross section [20]. Let the equivalent radius of
the nth circular cell bean. The(G1)mn can be expressed in the following form

(G1)mn = G1s (xm, ym;xn, yn) · k2
2 · ∆Sn

where(xn, yn) is the center of the cell n.∆Sn denotes the area of the nth cell. Similarly,

(G2)mn =

{

G2ss (xm, ym;xn, yn) · k2
2 · ∆Sn + jπk2an

2 J1 (k2an)H
(2)
0 (k2ρmn) , m 6= n

G2ss (xm, ym;xn, yn) · k2
2 · ∆Sn + j

2

[

πk2anH
(2)
1 (k2an) − 2j

]

m = n

with ρmn =

√

(xm − xn)2 + (ym − yn)2, whereJ1 is Bessel function of the first order.
The element in the matrix [G3] for TE case [21] can be written as

(G3)mn =

[

(

∂2

∂x2
+ k2

2

)

·

∫∫

cell n

G2s

(

x, y;x′, y′
)

dx′dy′

]

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

Then(G3)mn can be expressed in the following form

(G3)mn =











































































∂2G2ss(x,y;xn,yn)
∂x2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + G2ss (xm, ym;xn, yn) · k2
2 · ∆Sn

+ jπanJ1(k2an)
2ρ3

mn

[k2ρmn (ym − yn)2 H
(2)
0 (k2ρmn) +

(

(xm − xn)2 − (ym − yn)2
)

H
(2)
1 (k2ρmn)],m 6= n

∂2G2ss(x,y;xn,yn)
∂x2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + G2ss (xm, ym;xn, yn) · k2
2 · ∆Sn

+ j
4

[

πk2anH
(2)
1 (k2an) − 4j

]

m = n

(G4)mn =







































∂2G2ss(x,y;xn,yn)
∂x∂y

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn

+ jπanJ1(k2an)
2ρ3

mn

(xm − xn) (ym − yn)
[

2H
(2)
1 (k2ρmn) − k2ρmnH

(2)
0 (k2ρmn)

]

,

m 6= n

0 , m = n
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(G5)mn =











































































∂2Gs(x,y;xn,yn)
∂y2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + Gs (xm, ym;xn, yn) · k2
2 · ∆Sn

+ jπanJ1(k2an)
2ρ3

mn

[k2ρmn (xm − xn)2 H
(2)
0 (k2ρmn) +

(

(ym − yn)2 − (xm − xn)2
)

H
(2)
1 (k2ρmn) m 6= n

∂2Gs(x,y;xn,yn)
∂y2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + Gs (xm, ym;xn, yn) · k2
2 · ∆Sn

+ j
4

[

πk2anH
(2)
1 (k2an) − 4j

]

, m = n

(G6)mn =
∂2G1s (x, y;xn, yn)

∂x2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + G1s (xm, ym;xn, yn) · k2
2 · ∆Sn

(G7)mn =
∂2G1s (x, y;xn, yn)

∂x∂y

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn

(G8)mn =
∂2G1s (x, y;xn, yn)

∂y2

∣

∣

∣

∣

∣

∣

∣

x = xm

y = ym

· ∆Sn + G1s (xm, ym;xn, yn) · k2
2 · ∆Sn
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