89 research outputs found

    The influence of over-distraction on biomechanical response of cervical spine post anterior interbody fusion: a comprehensive finite element study

    Get PDF
    Introduction: Anterior cervical discectomy and fusion (ACDF) has been considered as the gold standard surgical treatment for cervical degenerative pathologies. Some surgeons tend to use larger-sized interbody cages during ACDF to restore the index intervertebral disc height, hence, this study evaluated the effect of larger-sized interbody cages on the cervical spine with ACDF under both static and cyclic loading.Method: Twenty pre-operative personalized poro-hyperelastic finite element (FE) models were developed. ACDF post-operative models were then constructed and four clinical scenarios (i.e., 1) No-distraction; 2) 1 mm distraction; 3) 2 mm distraction; and 4) 3 mm distraction) were predicted for each patient. The biomechanical responses at adjacent spinal levels were studied subject to static and cyclic loading. Non-parametric Friedman statistical comparative tests were performed and the p values less than 0.05 were reflected as significant.Results: The calculated intersegmental range of motion (ROM) and intradiscal pressure (IDP) from 20 pre-operative FE models were within the overall ranges compared to the available data from literature. Under static loading, greater ROM, IDP, facet joint force (FJF) values were detected post ACDF, as compared with pre-op. Over-distraction induced significantly higher IDP and FJF in both upper and lower adjacent levels in extension. Higher annulus fibrosus stress and strain values, and increased disc height and fluid loss at the adjacent levels were observed in ACDF group which significantly increased for over-distraction groups.Discussion: it was concluded that using larger-sized interbody cages (the height of ≥2 mm of the index disc height) can result in remarkable variations in biomechanical responses of adjacent levels, which may indicate as risk factor for adjacent segment disease. The results of this comprehensive FE investigation using personalized modeling technique highlight the importance of selecting the appropriate height of interbody cage in ACDF surgery

    Development of Bicycle Surrogate for Bicyclist Pre-Collision System Evaluation

    Get PDF
    As part of active safety systems for reducing bicyclist fatalities and injuries, Bicyclist Pre-Collision System (BPCS), also known as Bicyclist Autonomous Emergency Braking System, is being studied currently by several vehicles manufactures. This paper describes the development of a surrogate bicyclist which includes a surrogate bicycle and a surrogate bicycle rider to support the development and evaluation of BPCS. The surrogate bicycle is designed to represent the visual and radar characteristics of real bicyclists in the United States. The size of bicycle surrogate mimics the 26 inch adult bicycle, which is the most popular adult bicycle sold in the US. The radar cross section (RCS) of the surrogate bicycle is designed based on RCS measurement of the real adult sized bicycles. The surrogate bicycle is constructed with detachable components with shatter resistant material to prevent structural damage during a collision, and matches the look and RCS of a real 26 inch mountain bicycle from all 360 degree angles. The surrogate bicycle rider is a 168 cm tall adult with CNC machined realistic body shape. The skin of the surrogate bicycle rider has the RCS of a real human skin. Combined skin with realistic body shape, the surrogate bicyclist has the RCS matching to that of a same sized real human from 360 degree angles in the view of 77GHz automotive radar. The surrogate bicyclist has articulated leg motion which is important for micro Doppler sensing and can be supported on a sled or a mobile carrier. It can be moved at a speed of 20 mph and can be collided by vehicles from any direction and be reassembled in less than 5 minutes

    Pullout strength of pedicle screws with cement augmentation in severe osteoporosis: A comparative study between cannulated screws with cement injection and solid screws with cement pre-filling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pedicle screws with PMMA cement augmentation have been shown to significantly improve the fixation strength in a severely osteoporotic spine. However, the efficacy of screw fixation for different cement augmentation techniques, namely solid screws with retrograde cement pre-filling versus cannulated screws with cement injection through perforation, remains unknown. This study aimed to determine the difference in pullout strength between conical and cylindrical screws based on the aforementioned cement augmentation techniques. The potential loss of fixation upon partial screw removal after screw insertion was also examined.</p> <p>Method</p> <p>The Taguchi method with an L<sub>8 </sub>array was employed to determine the significance of design factors. Conical and cylindrical pedicle screws with solid or cannulated designs were installed using two different screw augmentation techniques: solid screws with retrograde cement pre-filling and cannulated screws with cement injection through perforation. Uniform synthetic bones (test block) simulating severe osteoporosis were used to provide a platform for each screw design and cement augmentation technique. Pedicle screws at full insertion and after a 360-degree back-out from full insertion were then tested for axial pullout failure using a mechanical testing machine.</p> <p>Results</p> <p>The results revealed the following 1) Regardless of the screw outer geometry (conical or cylindrical), solid screws with retrograde cement pre-filling exhibited significantly higher pullout strength than did cannulated screws with cement injection through perforation (<it>p </it>= 0.0129 for conical screws; <it>p </it>= 0.005 for cylindrical screws). 2) For a given cement augmentation technique (screws without cement augmentation, cannulated screws with cement injection or solid screws with cement pre-filling), no significant difference in pullout strength was found between conical and cylindrical screws (<it>p ></it>0.05). 3) Cement infiltration into the open cell of the test block led to the formation of a cement/bone composite structure. Observations of the failed specimens indicated that failure occurred at the composite/bone interface, whereas the composite remained well bonded to the screws. This result implies that the screw/composite interfacial strength was much higher than the composite/bone interfacial strength. 4) The back-out of the screw by 360 degrees from full insertion did not decrease the pullout strength in any of the studied cases. 5) Generally, larger standard deviations were found for the screw back-out cases, implying that the results of full insertion cases are more repeatable than those of the back-out cases.</p> <p>Conclusions</p> <p>Solid screws with retrograde cement pre-filling offer improved initial fixation strength when compared to that of cannulated screws with cement injection through perforation for both the conically and cylindrically shaped screw. Our results also suggest that the fixation screws can be backed out by 360 degrees for intra-operative adjustment without the loss of fixation strength.</p

    Effects of hyperbaric oxygen on the osteogenic differentiation of mesenchymal stem cells

    Get PDF
    BACKGROUND: Hyperbaric oxygenation was shown to increase bone healing in a rabbit model. However, little is known about the regulatory factors and molecular mechanism involved.We hypothesized that the effect of hyperbaric oxygen (HBO) on bone formation is mediated via increases in the osteogenic differentiation of mesenchymal stem cells (MSCs) which are regulated by Wnt signaling. METHODS: The phenotypic characterization of the MSCs was analyzed by flow cytometric analysis. To investigate the effects of HBO on Wnt signaling and osteogenic differentiation of MSCs, mRNA and protein levels of Wnt3a, beta-catenin, GSK-3beta, Runx 2, as well as alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining were analyzed after HBO treatment. To investigate the effects of HBO on Wnt processing and secretion, the expression of Wntless and vacuolar ATPases were quantified after HBO treatment. RESULTS: Cells expressed MSC markers such as CD105, CD146, and STRO-1. The mRNA and protein levels of Wnt3a, β-catenin, and Runx 2 were up-regulated, while GSK-3β was down-regulated after HBO treatment. Western blot analysis showed an increased β-catenin translocation with a subsequent stimulation of the expression of target genes after HBO treatment. The above observation was confirmed by small interfering (si)RNA treatment. HBO significantly increased alkaline phosphatase activity, calcium deposition, and the intensity of von Kossa staining of osteogenically differentiated MSCs. We further showed that HBO treatment increased the expression of Wntless, a retromer trafficking protein, and vacuolar ATPases to stimulate Wnt processing and secretion, and the effect was confirmed by siRNA treatment. CONCLUSIONS: HBO treatment increased osteogenic differentiation of MSCs via regulating Wnt processing, secretion, and signaling

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • …
    corecore