10,804 research outputs found
Selective Refinement Network for High Performance Face Detection
High performance face detection remains a very challenging problem,
especially when there exists many tiny faces. This paper presents a novel
single-shot face detector, named Selective Refinement Network (SRN), which
introduces novel two-step classification and regression operations selectively
into an anchor-based face detector to reduce false positives and improve
location accuracy simultaneously. In particular, the SRN consists of two
modules: the Selective Two-step Classification (STC) module and the Selective
Two-step Regression (STR) module. The STC aims to filter out most simple
negative anchors from low level detection layers to reduce the search space for
the subsequent classifier, while the STR is designed to coarsely adjust the
locations and sizes of anchors from high level detection layers to provide
better initialization for the subsequent regressor. Moreover, we design a
Receptive Field Enhancement (RFE) block to provide more diverse receptive
field, which helps to better capture faces in some extreme poses. As a
consequence, the proposed SRN detector achieves state-of-the-art performance on
all the widely used face detection benchmarks, including AFW, PASCAL face,
FDDB, and WIDER FACE datasets. Codes will be released to facilitate further
studies on the face detection problem.Comment: The first two authors have equal contributions. Corresponding author:
Shifeng Zhang ([email protected]
- …
