14,694 research outputs found
Scaling Theory of Polyelectrolyte Adsorption on Repulsive Charged Surface
We studied polyelectrolyte adsorption on a repulsive charged surface by
scaling analysis. At low ionic strength and low surface charge density in which
a single polyelectrolyte is able to be adsorbed onto the surface, different
regimes in the phase diagram are identified. The possibility of multi-layer
structure formed by polyelectrolytes of like charge is also investigated.Comment: 4 pages, 2 figure
Two spatially separated phases in semiconducting RbFeS
We report neutron scattering and transport measurements on semiconducting
RbFeS, a compound isostructural and isoelectronic to the
well-studied FeSe K, Rb, Cs, Tl/K) superconducting
systems. Both resistivity and DC susceptibility measurements reveal a magnetic
phase transition at K. Neutron diffraction studies show that the 275 K
transition originates from a phase with rhombic iron vacancy order which
exhibits an in-plane stripe antiferromagnetic ordering below 275 K. In
addition, interdigitated mesoscopically with the rhombic phase is an ubiquitous
phase with iron vacancy order. This phase has a
magnetic transition at K and an iron vacancy order-disorder
transition at K. These two different structural phases are closely
similar to those observed in the isomorphous Se materials. Based on the close
similarities of the in-plane antiferromagnetic structures, moments sizes, and
ordering temperatures in semiconducting RbFeS and
KFeSe, we argue that the in-plane antiferromagnetic order
arises from strong coupling between local moments. Superconductivity,
previously observed in the FeSeS system, is absent
in RbFeS, which has a semiconducting ground state. The
implied relationship between stripe/block antiferromagnetism and
superconductivity in these materials as well as a strategy for further
investigation is discussed in this paper.Comment: 7 pages, 5 figure
BL Lacertae are probable sources of the observed ultra-high energy cosmic rays
We calculate angular correlation function between ultra-high energy cosmic
rays (UHECR) observed by Yakutsk and AGASA experiments, and most powerful BL
Lacertae objects. We find significant correlations which correspond to the
probability of statistical fluctuation less than , including penatly
for selecting the subset of brightest BL Lacs. We conclude that some of BL Lacs
are sources of the observed UHECR and present a list of most probable
candidates.Comment: Replaced with the version accepted for publication in JETP Let
Single-cell western blotting.
To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution
The structure of algebraic covariant derivative curvature tensors
We use the Nash embedding theorem to construct generators for the space of
algebraic covariant derivative curvature tensors
Landau quantization effects in the charge-density-wave system (Per)(mnt) (where Au and Pt)
A finite transfer integral orthogonal to the conducting chains of a
highly one-dimensional metal gives rise to empty and filled bands that simulate
an indirect-gap semiconductor upon formation of a commensurate
charge-density-wave (CDW). In contrast to semiconductors such as Ge and Si with
bandgaps eV, the CDW system possesses an indirect gap with a greatly
reduced energy scale, enabling moderate laboratory magnetic fields to have a
major effect. The consequent variation of the thermodynamic gap with magnetic
field due to Zeeman splitting and Landau quantization enables the electronic
bandstructure parameters (transfer integrals, Fermi velocity) to be determined
accurately. These parameters reveal the orbital quantization limit to be
reached at T in (Per)(mnt) salts, making them highly
unlikely candidates for a recently-proposed cascade of field-induced
charge-density wave states
- …