91 research outputs found

    Recent development and applications of advanced materials via direct ink writing

    Get PDF
    Direct ink writing (DIW), a type of extrusion-based 3D printing method, enables the rapid design and building of size- and shape-scalable 3D structures in a low-cost and green manner without the need for specific size reactors and secondary substrates compared to traditional synthesis methods. Coupling the use of sol-gel inks with optimized rheological properties (elastoviscosity and shear stress) and a wide range of nanomaterials enhances the mechanical and electrical conductivity of printed products. In this review, the recent development in DIW methods, critical requirements for printable DIW inks, and applications of DIW-printed products in medical, energy storage, and environmental treatment are reviewed. A perspective outlook associated with limitations from current DIW research is proposed for the breakthrough development of such technology in the future

    Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Get PDF
    IL-6 and sonic hedgehog (Shh) signaling molecules are considered to maintain the growth of cancer stem cells (CSCs). Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML) are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted

    Ink-printed metal/graphene aerogel for glucose electro-oxidation

    Get PDF
    Three-dimensional (3D) printing has become one of the promising technologies for the development of bulk-sized nanomaterial composites for electrocatalysis. However, traditional methods such as field deposition modeling and stereolithography are not suitable for the development of functionalized materials for practical use. A large number of studies have focused on the development of the direct ink writing (DIW) printing technique for the fabrication of graphene aerogel (GA)-based electrodes with binders for electrocatalysis. Only a few studies have focused on the synthesis of GA materials from binder-free graphene oxide (GO) using the DIW 3D printing method. Here, we describe the preparation of GA-based electrodes (without size contraction) with different Pd–Pt loadings using the DIW printing method with a commercial 3D food printer. The electron microscopy results showed that a Pd–Pt/GA monolith with a high Pd–Pt loading (59.43 wt%) could be obtained. The DIW-printed Pd–Pt/GA-2 electrode showed good electrochemical performance in glucose electrooxidation (GOR), with a high output current density of 0.94 A g−1 in 0.3 M glucose/1 M NaOH solution at the 3000th cycle operation (60 h). This study shows the potential of DIW-printed binder-free Pd–Pt/GA electrodes for use in fuel cell applications

    Conjugated polymer-fullerene blend with strong optical limiting in the near-infrared

    Get PDF
    © 2009 Optical Society of AmericaThe definitive version of this paper is available at: http://dx.doi.org/10.1364/OE.17.022062DOI: 10.1364/OE.17.022062Optical-quality, melt processable thick films of a conjugated polymer blend containing poly(2-methoxy-5-(2-ethyl-hexyloxy)-(phenylene vinylene)) (MEH-PPV), a ₆₀ derivative (PCBM) and a plasticizer (1,2-di-iso-octylphthalate) have been developed and their nonlinear absorption and optical limiting properties have been investigated. These blend materials exhibited strong optical limiting characteristics in the near infrared region (750-900 nm), with broad temporal dynamic range spanning femtosecond to nanosecond pulse widths. The dispersion of the optical limiting figure-of-merit of the MEH-PPV:PCBM:DOP blend shows a peak near the wavelength of the MEH-PPV cation, indicating an important role of one-photon and two-photon induced charge transfer in the nonlinear absorption response

    Two-Photon Accessed Excited State Absorption in bis(terpyridyl Osmium)-(Porphinato)Zinc

    Get PDF
    Two-photon absorption properties of a (terpyridyl)osmium-(porphinato)zinc (OsPZnOs) are studied in bulk and waveguides. Integration of OsPZnOs (d\u3e1300GM) in waveguides showed enhanced nonlinear performance and potential for photonic applications

    Near IR Nonlinear Optics of an Organic Supermolecule

    Get PDF
    Two-photon accessed excited state absorption is shown to be an important mechanism in the near-IR nonlinear response of an organic supermolecule. This mechanism also provides an enhanced nonlinear absorption in an optical waveguide configuration

    Constitutively Nuclear FOXO3a Localization Predicts Poor Survival and Promotes Akt Phosphorylation in Breast Cancer

    Get PDF
    Background: The PI3K-Akt signal pathway plays a key role in tumorigenesis and the development of drug-resistance. Cytotoxic chemotherapy resistance is linked to limited therapeutic options and poor prognosis. Methodology/Principal Findings: Examination of FOXO3a and phosphorylated-Akt (P-Akt) expression in breast cancer tissue microarrays showed nuclear FOXO3a was associated with lymph node positivity (p = 0.052), poor prognosis (p = 0.014), and P-Akt expression in invasive ductal carcinoma. Using tamoxifen and doxorubicin-sensitive and -resistant breast cancer cell lines as models, we found that doxorubicin- but not tamoxifen-resistance is associated with nuclear accumulation of FOXO3a, consistent with the finding that sustained nuclear FOXO3a is associated with poor prognosis. We also established that doxorubicin treatment induces proliferation arrest and FOXO3a nuclear relocation in sensitive breast cancer cells. Induction of FOXO3a activity in doxorubicin-sensitive MCF-7 cells was sufficient to promote Akt phosphorylation and arrest cell proliferation. Conversely, knockdown of endogenous FOXO3a expression reduced PI3K/Akt activity. Using MDA-MB-231 cells, in which FOXO3a activity can be induced by 4-hydroxytamoxifen, we showed that FOXO3a induction up-regulates PI3K-Akt activity and enhanced doxorubicin resistance. However FOXO3a induction has little effect on cell proliferation, indicating that FOXO3a or its downstream activity is deregulated in the cytotoxic drug resistant breast cancer cells. Thus, our results suggest that sustained FOXO3a activation can enhance hyperactivation of the PI3K/Akt pathway. Conclusions/Significance: Together these data suggest that lymph node metastasis and poor survival in invasive ductal breast carcinoma are linked to an uncoupling of the Akt-FOXO3a signaling axis. In these breast cancers activated Akt fails to inactivate and re-localize FOXO3a to the cytoplasm, and nuclear-targeted FOXO3a does not induce cell death or cell cycle arrest. As such, sustained nuclear FOXO3a expression in breast cancer may culminate in cancer progression and the development of an aggressive phenotype similar to that observed in cytotoxic chemotherapy resistant breast cancer cell models. © 2010 Chen et al.published_or_final_versio

    Women with endometriosis have higher comorbidities: Analysis of domestic data in Taiwan

    Get PDF
    AbstractEndometriosis, defined by the presence of viable extrauterine endometrial glands and stroma, can grow or bleed cyclically, and possesses characteristics including a destructive, invasive, and metastatic nature. Since endometriosis may result in pelvic inflammation, adhesion, chronic pain, and infertility, and can progress to biologically malignant tumors, it is a long-term major health issue in women of reproductive age. In this review, we analyze the Taiwan domestic research addressing associations between endometriosis and other diseases. Concerning malignant tumors, we identified four studies on the links between endometriosis and ovarian cancer, one on breast cancer, two on endometrial cancer, one on colorectal cancer, and one on other malignancies, as well as one on associations between endometriosis and irritable bowel syndrome, one on links with migraine headache, three on links with pelvic inflammatory diseases, four on links with infertility, four on links with obesity, four on links with chronic liver disease, four on links with rheumatoid arthritis, four on links with chronic renal disease, five on links with diabetes mellitus, and five on links with cardiovascular diseases (hypertension, hyperlipidemia, etc.). The data available to date support that women with endometriosis might be at risk of some chronic illnesses and certain malignancies, although we consider the evidence for some comorbidities to be of low quality, for example, the association between colon cancer and adenomyosis/endometriosis. We still believe that the risk of comorbidity might be higher in women with endometriosis than that we supposed before. More research is needed to determine whether women with endometriosis are really at risk of these comorbidities
    • …
    corecore