5,507 research outputs found
A note on the realignment criterion
For a quantum state in a bipartite system represented as a density matrix,
researchers used the realignment matrix and functions on its singular values to
study the separability of the quantum state. We obtain bounds for elementary
symmetric functions of singular values of realignment matrices. This answers
some open problems proposed by Lupo, Aniello, and Scardicchio. As a
consequence, we show that the proposed scheme by these authors for testing
separability would not work if the two subsystems of the bipartite system have
the same dimension.Comment: 11 pages, to appear in Journal of Physics A: Mathematical and
Theoretica
Daphnias: from the individual based model to the large population equation
The class of deterministic 'Daphnia' models treated by Diekmann et al. (J
Math Biol 61: 277-318, 2010) has a long history going back to Nisbet and Gurney
(Theor Pop Biol 23: 114-135, 1983) and Diekmann et al. (Nieuw Archief voor
Wiskunde 4: 82-109, 1984). In this note, we formulate the individual based
models (IBM) supposedly underlying those deterministic models. The models treat
the interaction between a general size-structured consumer population
('Daphnia') and an unstructured resource ('algae'). The discrete, size and
age-structured Daphnia population changes through births and deaths of its
individuals and throught their aging and growth. The birth and death rates
depend on the sizes of the individuals and on the concentration of the algae.
The latter is supposed to be a continuous variable with a deterministic
dynamics that depends on the Daphnia population. In this model setting we prove
that when the Daphnia population is large, the stochastic differential equation
describing the IBM can be approximated by the delay equation featured in
(Diekmann et al., l.c.)
Direct evidence of a zigzag spin chain structure in the honeycomb lattice: A neutron and x-ray diffraction investigation on single crystal
We have combined single crystal neutron and x-ray diffractions to investigate
the magnetic and crystal structures of the honeycomb lattice .
The system orders magnetically below K with Ir ions forming
zigzag spin chains within the layered honeycomb network with ordered moment of
/Ir site. Such a configuration sharply contrasts the
N{\'{e}}el or stripe states proposed in the Kitaev-Heisenberg model. The
structure refinement reveals that the Ir atoms form nearly ideal 2D honeycomb
lattice while the octahedra experience a trigonal distortion that
is critical to the ground state. The results of this study provide much-needed
experimental insights into the magnetic and crystal structure crucial to the
understanding of the exotic magnetic order and possible topological
characteristics in the 5-electron based honeycomb lattice.Comment: Revised version as that to appear in PR
Direct strain and elastic energy evaluation in rolled-up semiconductor tubes by x-ray micro-diffraction
We depict the use of x-ray diffraction as a tool to directly probe the strain
status in rolled-up semiconductor tubes. By employing continuum elasticity
theory and a simple model we are able to simulate quantitatively the strain
relaxation in perfect crystalline III-V semiconductor bi- and multilayers as
well as in rolled-up layers with dislocations. The reduction in the local
elastic energy is evaluated for each case. Limitations of the technique and
theoretical model are discussed in detail.Comment: 32 pages (single column), 9 figures, 39 reference
Radiometric force in dusty plasmas
A radiofrequency glow discharge plasma, which is polluted with a certain
number of dusty grains, is studied. In addition to various dusty plasma
phenomena, several specific colloidal effects should be considered. We focus on
radiometric forces, which are caused by inhomogeneous temperature distribution.
Aside from thermophoresis, the role of temperature distribution in dusty
plasmas is an open question. It is shown that inhomogeneous heating of the
grain by ion flows results in a new photophoresis like force, which is specific
for dusty discharges. This radiometric force can be observable under conditions
of recent microgravity experiments.Comment: 4 pages, amsmat
Asteroid lightcurves from the Palomar Transient Factory survey: Rotation periods and phase functions from sparse photometry
We fit 54,296 sparsely-sampled asteroid lightcurves in the Palomar Transient
Factory to a combined rotation plus phase-function model. Each lightcurve
consists of 20+ observations acquired in a single opposition. Using 805
asteroids in our sample that have reference periods in the literature, we find
the reliability of our fitted periods is a complicated function of the period,
amplitude, apparent magnitude and other attributes. Using the 805-asteroid
ground-truth sample, we train an automated classifier to estimate (along with
manual inspection) the validity of the remaining 53,000 fitted periods. By this
method we find 9,033 of our lightcurves (of 8,300 unique asteroids) have
reliable periods. Subsequent consideration of asteroids with multiple
lightcurve fits indicate 4% contamination in these reliable periods. For 3,902
lightcurves with sufficient phase-angle coverage and either a reliably-fit
period or low amplitude, we examine the distribution of several phase-function
parameters, none of which are bimodal though all correlate with the bond albedo
and with visible-band colors. Comparing the theoretical maximal spin rate of a
fluid body with our amplitude versus spin-rate distribution suggests that, if
held together only by self-gravity, most asteroids are in general less dense
than 2 g/cm, while C types have a lower limit of between 1 and 2 g/cm,
in agreement with previous density estimates. For 5-20km diameters, S types
rotate faster and have lower amplitudes than C types. If both populations share
the same angular momentum, this may indicate the two types' differing ability
to deform under rotational stress. Lastly, we compare our absolute magnitudes
and apparent-magnitude residuals to those of the Minor Planet Center's nominal
, rotation-neglecting model; our phase-function plus Fourier-series
fitting reduces asteroid photometric RMS scatter by a factor of 3.Comment: 35 pages, 29 figures. Accepted 15-Apr-2015 to The Astronomical
Journal (AJ). Supplementary material including ASCII data tables will be
available through the publishing journal's websit
Analytic Controllability of Time-Dependent Quantum Control Systems
The question of controllability is investigated for a quantum control system
in which the Hamiltonian operator components carry explicit time dependence
which is not under the control of an external agent. We consider the general
situation in which the state moves in an infinite-dimensional Hilbert space, a
drift term is present, and the operators driving the state evolution may be
unbounded. However, considerations are restricted by the assumption that there
exists an analytic domain, dense in the state space, on which solutions of the
controlled Schrodinger equation may be expressed globally in exponential form.
The issue of controllability then naturally focuses on the ability to steer the
quantum state on a finite-dimensional submanifold of the unit sphere in Hilbert
space -- and thus on analytic controllability. A relatively straightforward
strategy allows the extension of Lie-algebraic conditions for strong analytic
controllability derived earlier for the simpler, time-independent system in
which the drift Hamiltonian and the interaction Hamiltonia have no intrinsic
time dependence. Enlarging the state space by one dimension corresponding to
the time variable, we construct an augmented control system that can be treated
as time-independent. Methods developed by Kunita can then be implemented to
establish controllability conditions for the one-dimension-reduced system
defined by the original time-dependent Schrodinger control problem. The
applicability of the resulting theorem is illustrated with selected examples.Comment: 13 page
Curvature homogeneous spacelike Jordan Osserman pseudo-Riemannian manifolds
Let s be at least 2. We construct Ricci flat pseudo-Riemannian manifolds of
signature (2s,s) which are not locally homogeneous but whose curvature tensors
never the less exhibit a number of important symmetry properties. They are
curvature homogeneous; their curvature tensor is modeled on that of a local
symmetric space. They are spacelike Jordan Osserman with a Jacobi operator
which is nilpotent of order 3; they are not timelike Jordan Osserman. They are
k-spacelike higher order Jordan Osserman for ; they are k-timelike
higher order Jordan Osserman for , and they are not k timelike
higher order Jordan Osserman for .Comment: Update bibliography, fix minor misprint
Stronger computational modelling of signalling pathways using both continuous and discrete-state methods
Starting from a biochemical signalling pathway model expresses in a process algebra enriched with quantitative information, we automatically derive both continuous-space and discrete-space representations suitable for numerical evaluation. We compare results obtained using approximate stochastic simulation thereby exposing a flaw in the use of the differentiation procedure producing misleading results
- âŠ