66 research outputs found

    Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence

    Get PDF
    A major development underlying hydrodynamic turbulence theory is the similarity decay hypothesis due to von Karman and Howarth, here extended empirically to plasma turbulence in the solar wind. In similarity decay the second-order correlation experiences a continuous transformation based on a universal functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly. Here, we analyze an ensemble of Elsässer autocorrelation functions computed from Advanced Composition Explorer data at 1 astronomical unit (AU), and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity form of the type anticipated from von Karman's hypothesis applied to weakly compressive magnetohydrodynamic turbulence. This provides a firm empirical basis for employing the similarity decay hypothesis to the Elsässer correlations that represent the incompressive turbulence cascade. This approach is of substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and subgrid-scale dynamical modeling.Fil: Roy, Sohom. University Of Delaware; Estados UnidosFil: Chhiber, R.. University Of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Ruiz, Maria Emilia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Matthaeus, W .H.. University Of Delaware; Estados Unido

    Finite dissipation in anisotropic magnetohydrodynamic turbulence

    Get PDF
    In the presence of an externally supported, mean magnetic field, a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with an increasing Reynolds number and in the presence of a mean magnetic field of varying strength. Proceeding numerically, we find that, as the Reynolds number increases, the dissipation rate asymptotes to a finite value for each magnetic-field strength, confirming the Kármán-Howarth hypothesis as applied to MHD. The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field value by the mean magnetic field but then approaches a constant value for higher values of the mean-field strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values corresponding to the high-mean-field limit of the three-dimensional runs while the 2DMHD results admit distinct values far from both the zero-mean-field cases and the high-mean-field limit of the threedimensional cases. These findings provide firm underpinnings for numerous applications in space and astrophysics wherein von Kármán decay of turbulence is assumed

    Observations of Energetic-particle Population Enhancements along Intermittent Structures near the Sun from the Parker Solar Probe

    Get PDF
    Observations at 1 au have confirmed that enhancements in measured energetic-particle (EP) fluxes are statistically associated with "rough" magnetic fields, i.e., fields with atypically large spatial derivatives or increments, as measured by the Partial Variance of Increments (PVI) method. One way to interpret this observation is as an association of the EPs with trapping or channeling within magnetic flux tubes, possibly near their boundaries. However, it remains unclear whether this association is a transport or local effect; i.e., the particles might have been energized at a distant location, perhaps by shocks or reconnection, or they might experience local energization or re-acceleration. The Parker Solar Probe (PSP), even in its first two orbits, offers a unique opportunity to study this statistical correlation closer to the corona. As a first step, we analyze the separate correlation properties of the EPs measured by the Integrated Science Investigation of the Sun (IS⊙IS) instruments during the first solar encounter. The distribution of time intervals between a specific type of event, i.e., the waiting time, can indicate the nature of the underlying process. We find that the IS⊙IS observations show a power-law distribution of waiting times, indicating a correlated (non-Poisson) distribution. Analysis of low-energy (~15 – 200 keV/nuc) IS⊙IS data suggests that the results are consistent with the 1 au studies, although we find hints of some unexpected behavior. A more complete understanding of these statistical distributions will provide valuable insights into the origin and propagation of solar EPs, a picture that should become clear with future PSP orbits

    MagneToRE: Mapping the 3-D Magnetic Structure of the Solar Wind Using a Large Constellation of Nanosatellites

    Get PDF
    Unlike the vast majority of astrophysical plasmas, the solar wind is accessible to spacecraft, which for decades have carried in-situ instruments for directly measuring its particles and fields. Though such measurements provide precise and detailed information, a single spacecraft on its own cannot disentangle spatial and temporal fluctuations. Even a modest constellation of in-situ spacecraft, though capable of characterizing fluctuations at one or more scales, cannot fully determine the plasma’s 3-D structure. We describe here a concept for a new mission, the Magnetic Topology Reconstruction Explorer (MagneToRE), that would comprise a large constellation of in-situ spacecraft and would, for the first time, enable 3-D maps to be reconstructed of the solar wind’s dynamic magnetic structure. Each of these nanosatellites would be based on the CubeSat form-factor and carry a compact fluxgate magnetometer. A larger spacecraft would deploy these smaller ones and also serve as their telemetry link to the ground and as a host for ancillary scientific instruments. Such an ambitious mission would be feasible under typical funding constraints thanks to advances in the miniaturization of spacecraft and instruments and breakthroughs in data science and machine learning

    Magnetic Field Line Random Walk and Solar Energetic Particle Path Lengths: Stochastic Theory and PSP/ISoIS Observation

    Full text link
    Context:In 2020 May-June, six solar energetic ion events were observed by the Parker Solar Probe/ISoIS instrument suite at 0.35 AU from the Sun. From standard velocity-dispersion analysis, the apparent ion path length is 0.625 AU at the onset of each event. Aims:We develop a formalism for estimating the path length of random-walking magnetic field lines, to explain why the apparent ion pathlength at event onset greatly exceeds the radial distance from the Sun for these events. Methods:We developed analytical estimates of the average increase in pathlength of random-walking magnetic field lines, relative to the unperturbed mean field. Monte Carlo simulations of fieldline and particle trajectories in a model of solar wind turbulence are used to validate the formalism and study the path lengths of particle guiding-center and full-orbital trajectories. The formalism is implemented in a global solar wind model, and results are compared with ion pathlengths inferred from ISoIS observations. Results:Both a simple estimate and a rigorous theoretical formulation are obtained for fieldlines' pathlength increase as a function of pathlength along the large-scale field. From simulated fieldline and particle trajectories, we find that particle guiding centers can have pathlengths somewhat shorter than the average fieldline pathlength, while particle orbits can have substantially larger pathlengths due to their gyromotion with a nonzero effective pitch angle. Conclusions:The long apparent path length during these solar energetic ion events can be explained by 1) a magnetic field line path length increase due to the field line random walk, and 2) particle transport about the guiding center with a nonzero effective pitch angle. Our formalism for computing the magnetic field line path length, accounting for turbulent fluctuations, may be useful for application to solar particle transport in general
    corecore