4 research outputs found

    Schizo-Net: A novel Schizophrenia Diagnosis Framework Using Late Fusion Multimodal Deep Learning on Electroencephalogram-Based Brain Connectivity Indices

    Get PDF
    Schizophrenia (SCZ) is a serious mental condition that causes hallucinations, delusions, and disordered thinking. Traditionally, SCZ diagnosis involves the subject’s interview by a skilled psychiatrist. The process needs time and is bound to human errors and bias. Recently, brain connectivity indices have been used in a few pattern recognition methods to discriminate neuro-psychiatric patients from healthy subjects. The study presents Schizo-Net , a novel, highly accurate, and reliable SCZ diagnosis model based on a late multimodal fusion of estimated brain connectivity indices from EEG activity. First, the raw EEG activity is pre-processed exhaustively to remove unwanted artifacts. Next, six brain connectivity indices are estimated from the windowed EEG activity, and six different deep learning architectures (with varying neurons and hidden layers) are trained. The present study is the first which considers a large number of brain connectivity indices, especially for SCZ. A detailed study was also performed that identifies SCZ-related changes occurring in brain connectivity, and the vital significance of BCI is drawn in this regard to identify the biomarkers of the disease. Schizo-Net surpasses current models and achieves 99.84% accuracy. An optimum deep learning architecture selection is also performed for improved classification. The study also establishes that Late fusion technique outperforms single architecture-based prediction in diagnosing SCZ

    How Visual Stimuli Evoked P300 is Transforming the Brain–Computer Interface Landscape: A PRISMA Compliant Systematic Review

    Get PDF
    Non-invasive Visual Stimuli evoked-EEGbased P300 BCIs have gained immense attention in recent years due to their ability to help patients with disability using BCI-controlled assistive devices and applications. In addition to the medical field, P300 BCI has applications in entertainment, robotics, and education. The current article systematically reviews 147 articles that were published between 2006-2021*. Articles that pass the pre-defined criteria are included in the study. Further, classification based on their primary focus, including article orientation, participants’ age groups, tasks given, databases, the EEG devices used in the studies, classification models, and application domain, is performed. The application-based classification considers a vast horizon, including medical assessment, assistance, diagnosis, applications, robotics, entertainment, etc. The analysis highlights an increasing potential for P300 detection using visual stimuli as a prominent and legitimate research area and demonstrates a significant growth in the research interest in the field of BCI spellers utilizing P300. This expansion was largely driven by the spread of wireless EEG devices, advances in computational intelligence methods, machine learning, neural networks and deep learning

    Deep-Precognitive Diagnosis: Preventing Future Pandemics by Novel Disease Detection With Biologically-Inspired Conv-Fuzzy Network.

    No full text
    Deep learning-based Computer-Aided Diagnosis has gained immense attention in recent years due to its capability to enhance diagnostic performance and elucidate complex clinical tasks. However, conventional supervised deep learning models are incapable of recognizing novel diseases that do not exist in the training dataset. Automated early-stage detection of novel infectious diseases can be vital in controlling their rapid spread. Moreover, the development of a conventional CAD model is only possible after disease outbreaks and datasets become available for training (viz. COVID-19 outbreak). Since novel diseases are unknown and cannot be included in training data, it is challenging to recognize them through existing supervised deep learning models. Even after data becomes available, recognizing new classes with conventional models requires a complete extensive re-training. The present study is the first to report this problem and propose a novel solution to it. In this study, we propose a new class of CAD models, i.e., Deep-Precognitive Diagnosis, wherein artificial agents are enabled to identify unknown diseases that have the potential to cause a pandemic in the future. A de novo biologically-inspired Conv-Fuzzy network is developed. Experimental results show that the model trained to classify Chest X-Ray (CXR) scans into normal and bacterial pneumonia detected a novel disease during testing, unseen by it in the training sample and confirmed to be COVID-19 later. The model is also tested on SARS-CoV-1 and MERS-CoV samples as unseen diseases and achieved state-of-the-art accuracy. The proposed model eliminates the need for model re-training by creating a new class in real-time for the detected novel disease, thus classifying it on all subsequent occurrences. Second, the model addresses the challenge of limited labeled data availability, which renders most supervised learning techniques ineffective and establishes that modified fuzzy classifiers can achieve high accuracy on image classification tasks
    corecore