42 research outputs found

    Thermal stability of ultrasoft Fe–Zr–N films

    Get PDF
    The thermal stability of nanocrystalline ultrasoft magnetic (Fe98Zr2)1−xNx films with x = 0.10–0.25 was studied using thermal desorption spectrometry, positron beam analysis and high resolution transmission electron microscopy. The results demonstrate that grain growth during the heat treatment is accompanied by an increase of the free volume and nitrogen relocation and desorption. All these phenomena can drastically degrade the ultrasoft magnetic properties. The nitrogen desorption has already started at temperatures around 400 K. Nevertheless, most of the nitrogen leaves the sample at a temperature above 800 K. We found that nitrogen out-diffusion is significantly retarded compared with the prediction of the diffusion in bulk α-Fe. A qualitative model is proposed in which the nitrogen out-diffusion in nanocrystalline material is retarded by trapping at immobile defects, namely Zr atoms, and also by voids at grain boundaries. From a certain temperature, nitrogen migrates from the interior of the nanograins to the nanovoids at the grain boundaries and the out-diffusion to the outer surface is controlled by transport between the voids.

    Growth and properties of strained VOx thin films with controlled stoichiometry

    Full text link
    We have succeeded in growing epitaxial films of rocksalt VOx on MgO(001) substrates. The oxygen content as a function of oxygen flux was determined using 18O2-RBS and the vanadium valence using XAS. The upper and lower stoichiometry limits found are similar to the ones known for bulk material (0.8<x<1.3). From the RHEED oscillation period a large number of vacancies for both vanadium and oxygen were deduced, i.e. ~16% for stoichiometric VO. These numbers are, surprisingly, very similar to those for bulk material and consequently quite strain-insensitive. XAS measurements reveal that the vacancies give rise to strong low symmetry ligand fields to be present. The electrical conductivity of the films is much lower than the conductivity of bulk samples which we attribute to a decrease in the direct overlap between t2g orbitals in the coherently strained layers. The temperature dependence of the conductivity is consistent with a variable range hopping mechanism.Comment: 12 pages, 16 figures included, revised versio
    corecore