3,606 research outputs found

    Integrated thermochronology and organic maturation studies in the South Portuguese Zone and Algarve Basin (South Portugal)

    Get PDF
    This PhD research project started in February this year. Its main goal is to combine apatite fission track analysis (AFTA) with other low-temperature thermochronometers (zircon fission track, (U-Th)/He apatite) to construct temperature-time paths for the South Portuguese Zone and the Algarve Basin

    Resonances from meson-meson scattering in U(3) CHPT

    Full text link
    In this work, the complete one loop calculation of meson-meson scattering amplitudes within U(3)\otimes U(3) chiral perturbation theory with explicit resonance states is carried out for the first time. Partial waves are unitarized from the perturbative calculation employing a non-perturbative approach based on the N/D method. Once experimental data are reproduced in a satisfactory way we then study the resonance properties, such as the pole positions, corresponding residues and their N_C behaviors. The resulting N_C dependence is the first one in the literature that takes into account the fact that the \eta_1 becomes the ninth Goldstone boson in the chiral limit for large N_C. Within this scheme the vector resonances studied, \rho(770), K^*(892) and \phi(1020), follow an N_C trajectory in agreement with their standard \bar{q}q interpretation. The scalars f_0(1370), a_0(1450) and K^*(1430) also have for large N_C a \bar{q}q pole position trajectory and all of them tend to a bare octet of scalar resonances around 1.4 GeV. The f_0(980) tends asymptotically to the bare pole position of a singlet scalar resonance around 1 GeV. The \sigma, \kappa and a_0(980) scalar resonances have a very different N_C behavior. The case of the \sigma resonance is analyzed with special detail.Comment: 50 pages, 15 figures, 1 table. Enlarged version with more detail comparisons with previous results in the literature. To match with accepted version for publicatio

    \pi N scattering in relativistic baryon chiral perturbation theory revisited

    Full text link
    We have analyzed pion-nucleon scattering using the manifestly relativistic covariant framework of Infrared Regularization up to {\cal O}(q^3) in the chiral expansion, where q is a generic small momentum. We describe the low-energy phase shifts with a similar quality as previously achieved with Heavy Baryon Chiral Perturbation Theory, \sqrt{s}\lesssim1.14 GeV. New values are provided for the {\cal O}(q^2) and {\cal O}(q^3) low-energy constants, which are compared with previous determinations. This is also the case for the scattering lengths and volumes. Finally, we have unitarized the previous amplitudes and as a result the energy range where data are reproduced increases significantly.Comment: 26 pages, 5 figures, 5 table

    Multipole analysis of spin observables in vector meson photoproduction

    Get PDF
    A multipole analysis of vector meson photoproduction is formulated as a generalization of the pseudoscalar meson case. Expansion of spin observables in the multipole basis and behavior of these observables near threshold and resonances are examined.Comment: 15 pages, latex, 2 figure

    Analytic Confinement and Regge Trajectories

    Full text link
    A simple relativistic quantum field model with the Yukawa-type interaction is considered to demonstrate that the analytic confinement of the constituent ("quarks") and carrier ("gluons") particles explains qualitatively the basic dynamical properties of the spectrum of mesons considered as two-particle stable bound states of quarks and gluons: the quarks and gluons are confined, the glueballs represent bound states of massless gluons, the masses of mesons are larger than the sum of the constituent quark masses and the Regge trajectories of mesonic orbital excitations are almost linear.Comment: RevTeX, 16 pages, 3 figures and 2 table

    Casimir force acting on magnetodielectric bodies embedded in media

    Full text link
    Within the framework of macroscopic quantum electrodynamics, general expressions for the Casimir force acting on linearly and causally responding magnetodielectric bodies that can be embedded in another linear and causal magnetodielectric medium are derived. Consistency with microscopic harmonic-oscillator models of the matter is shown. The theory is applied to planar structures and proper generalizations of Casimir's and Lifshitz-type formulas are given.Comment: 15 pages, 2 figures; minor additions and corrections, to appear in PR

    Properties of Regge Trajectories

    Get PDF
    Early Chew-Frautschi plots show that meson and baryon Regge trajectoies are approximately linear and non-intersecting. In this paper, we reconstruct all Regge trajectories from the most recent data. Our plots show that meson trajectories are non-linear and intersecting. We also show that all current meson Regge trajectories models are ruled out by data.Comment: 30 pages, latex, 18 figures, to be published in Physical Review

    Why Nature has made a choice of one time and three space coordinates?

    Get PDF
    We propose a possible answer to one of the most exciting open questions in physics and cosmology, that is the question why we seem to experience four- dimensional space-time with three ordinary and one time dimensions. We have known for more than 70 years that (elementary) particles have spin degrees of freedom, we also know that besides spin they also have charge degrees of freedom, both degrees of freedom in addition to the position and momentum degrees of freedom. We may call these ''internal degrees of freedom '' the ''internal space'' and we can think of all the different particles, like quarks and leptons, as being different internal states of the same particle. The question then naturally arises: Is the choice of the Minkowski metric and the four-dimensional space-time influenced by the ''internal space''? Making assumptions (such as particles being in first approximation massless) about the equations of motion, we argue for restrictions on the number of space and time dimensions. (Actually the Standard model predicts and experiments confirm that elementary particles are massless until interactions switch on masses.) Accepting our explanation of the space-time signature and the number of dimensions would be a point supporting (further) the importance of the ''internal space''.Comment: 13 pages, LaTe

    Trapping cold atoms near carbon nanotubes: thermal spin flips and Casimir-Polder potential

    Get PDF
    We investigate the possibility to trap ultracold atoms near the outside of a metallic carbon nanotube (CN) which we imagine to use as a miniaturized current-carrying wire. We calculate atomic spin flip lifetimes and compare the strength of the Casimir-Polder potential with the magnetic trapping potential. Our analysis indicates that the Casimir-Polder force is the dominant loss mechanism and we compute the minimum distance to the carbon nanotube at which an atom can be trapped.Comment: 8 pages, 3 figure
    • …
    corecore