1,413 research outputs found

    Multiple precision evaluation of the Airy Ai function with reduced cancellation

    Get PDF
    The series expansion at the origin of the Airy function Ai(x) is alternating and hence problematic to evaluate for x > 0 due to cancellation. Based on a method recently proposed by Gawronski, M\"uller, and Reinhard, we exhibit two functions F and G, both with nonnegative Taylor expansions at the origin, such that Ai(x) = G(x)/F(x). The sums are now well-conditioned, but the Taylor coefficients of G turn out to obey an ill-conditioned three-term recurrence. We use the classical Miller algorithm to overcome this issue. We bound all errors and our implementation allows an arbitrary and certified accuracy, that can be used, e.g., for providing correct rounding in arbitrary precision

    A Stochastic Representation of the Local Structure of Turbulence

    Full text link
    Based on the mechanics of the Euler equation at short time, we show that a Recent Fluid Deformation (RFD) closure for the vorticity field, neglecting the early stage of advection of fluid particles, allows to build a 3D incompressible velocity field that shares many properties with empirical turbulence, such as the teardrop shape of the R-Q plane. Unfortunately, non gaussianity is weak (i.e. no intermittency) and vorticity gets preferentially aligned with the wrong eigenvector of the deformation. We then show that slightly modifying the former vectorial field in order to impose the long range correlated nature of turbulence allows to reproduce the main properties of stationary flows. Doing so, we end up with a realistic incompressible, skewed and intermittent velocity field that reproduces the main characteristics of 3D turbulence in the inertial range, including correct vorticity alignment properties.Comment: 6 pages, 3 figures, final version, published

    On the Rapid Increase of Intermittency in the Near-Dissipation Range of Fully Developed Turbulence

    Full text link
    Intermittency, measured as log(F(r)/3), where F(r) is the flatness of velocity increments at scale r, is found to rapidly increase as viscous effects intensify, and eventually saturate at very small scales. This feature defines a finite intermediate range of scales between the inertial and dissipation ranges, that we shall call near-dissipation range. It is argued that intermittency is multiplied by a universal factor, independent of the Reynolds number Re, throughout the near-dissipation range. The (logarithmic) extension of the near-dissipation range varies as \sqrt(log Re). As a consequence, scaling properties of velocity increments in the near-dissipation range strongly depend on the Reynolds number.Comment: 7 pages, 7 figures, to appear in EPJ

    Recent Fluid Deformation closure for velocity gradient tensor dynamics in turbulence: time-scale effects and expansions

    Full text link
    In order to model pressure and viscous terms in the equation for the Lagrangian dynamics of the velocity gradient tensor in turbulent flows, Chevillard & Meneveau (Phys. Rev. Lett. 97, 174501, 2006) introduced the Recent Fluid Deformation closure. Using matrix exponentials, the closure allows to overcome the unphysical finite-time blow-up of the well-known Restricted Euler model. However, it also requires the specification of a decorrelation time scale of the velocity gradient along the Lagrangian evolution, and when the latter is chosen too short (or, equivalently, the Reynolds number is too high), the model leads to unphysical statistics. In the present paper, we explore the limitations of this closure by means of numerical experiments and analytical considerations. We also study the possible effects of using time-correlated stochastic forcing instead of the previously employed white-noise forcing. Numerical experiments show that reducing the correlation time scale specified in the closure and in the forcing does not lead to a commensurate reduction of the autocorrelation time scale of the predicted evolution of the velocity gradient tensor. This observed inconsistency could explain the unrealistic predictions at increasing Reynolds numbers.We perform a series expansion of the matrix exponentials in powers of the decorrelation time scale, and we compare the full original model with a linearized version. The latter is not able to extend the limits of applicability of the former but allows the model to be cast in terms of a damping term whose sign gives additional information about the stability of the model as function of the second invariant of the velocity gradient tensor.Comment: 11 pages, 14 figures, submitted to the special issue "Fluids and Turbulence" of Physica

    The functions erf and erfc computed with arbitrary precision and explicit error bounds

    Get PDF
    The version available on the HAL server is slightly different from the published version because it contains full proofs.International audienceThe error function erf is a special function. It is widely used in statistical computations for instance, where it is also known as the standard normal cumulative probability. The complementary error function is defined as erfc(x)=erf(x)-1. In this paper, the computation of erf(x) and erfc(x) in arbitrary precision is detailed: our algorithms take as input a target precision t' and deliver approximate values of erf(x) or erfc(x) with a relative error bounded by 2^(-t'). We study three different algorithms for evaluating erf and erfc. These algorithms are completely detailed. In particular, the determination of the order of truncation, the analysis of roundoff errors and the way of choosing the working precision are presented. The scheme used for implementing erf and erfc and the proofs are expressed in a general setting, so they can directly be reused for the implementation of other functions. We implemented the three algorithms and studied experimentally what is the best algorithm to use in function of the point x and the target precision t'

    Improved approaches to ligand growing through fragment docking and fragment-based library design

    Get PDF
    Die Fragment-basierte Wirkstoffforschung (“fragment-based drug discovery“ – FBDD) hat in den vergangenen zwei Jahrzehnten kontinuierlich an Beliebtheit gewonnen und sich zu einem dominanten Instrument der Erforschung neuer chemischer Moleküle als potentielle bioaktive Modulatoren entwickelt. FBDD ist eng mit Ansätzen zur Fragment-Erweiterung, wie etwa dem Fragment-„growing“, „merging“ oder dem „linking“, verknüpft. Diese Entwicklungsansätze können mit Hilfe von Computerprogrammen oder teilautomatischen Prozessen der „de novo“ Wirkstoffentwicklung beschleunigt werden. Obwohl Computer mühelos Millionen von Vorschlägen generieren können, geschieht dies allerdings oft auf Kosten unsicherer synthetischer Realisierbarkeit der Verbindungen mit einer potentiellen Sackgasse im Optimierungsprozess. Dieses Manuskript beschreibt die Entwicklung zweier computerbasierter Instrumente, PINGUI und SCUBIDOO, mit dem Ziel den FBDD Ausarbeitungs-Zyklus zu fördern. PINGUI ist ein halbautomatischer Arbeitsablauf zur Fragment-Erweiterung basierend auf der Proteinstruktur unter Berücksichtigung der synthetischen Umsetzbarkeit. SCUBIDOO ist eine freizugängliche Datenbank mit aktuell 21 Millionen verfügbaren virtuellen Produkten, entwickelt durch die Kombination kommerziell verfügbarer Bausteine („building blocks“) mit bewährten organischen Reaktionen. Zu jedem erzeugten virtuellen Produkt wird somit eine Synthesevorschrift geliefert. Die entscheidenden Funktionen von PINGUI, wie die Erzeugung abgeleiteter Bibliotheken oder das Anwenden organischer Reaktionen, wurden daraufhin in die SCUBIDOO Webseite integriert. PINGUI als auch SCUBIDOO wurden des Weiteren zur Erforschung Fragment-basierter Liganden („fragment-based ligand discovery“) mit dem β-2 adrenergen Rezeptor (β-2-AR) und der PIM1 Kinase als Zielproteine („targets“) eingesetzt. Im Rahmen einer ersten Studie zum β-2-AR wurden mit PINGUI acht unterschiedliche Erweiterungen für verschiedene Fragment-Treffer („hits“) vorhergesagt (ausgewählt?). Alle acht Verbindungen konnten dabei erfolgreich synthetisiert werden und vier der acht Produkte zeigten im Vergleich zu den Ausgangsfragmenten eine erhöhte Affinität zum target. Eine zweite Studie umfasste die Anwendung von SCUBIDOO zur schnellen Identifikation von Fragmenten und deren möglichen Erweiterungen mit potentieller Bindungsaktivität zur PIM-1 Kinase. Als Ergebnis ergab sich ein Fragment-Treffer mit der dazugehörigen Kristallstruktur. Weitere Folgeprodukte befinden sich derzeit in Synthese. Abschließend wurde SCUBIDOO an eine automatische Roboter- Synthese gekoppelt, wodurch hunderte von Verbindungen effizient parallel synthetisiert werden können. 127 der 240 vorhergesagten Produkte (53%) wurden mit dem Ziel an den β-2-AR zu binden bereits synthetisiert und werden in Kürze weitergehend getestet. Die beiden vorgestellten Computer-Tools könnten zur Verbesserung im Anfangsstadium befindlicher Projekte zur Fragment-basierten Wirkstoffentwicklung, vor allem hinsichtlich der Strategien im Bereich der Fragment Erweiterung, eingesetzt werden. PINGUI zum Beispiel generiert Vorschläge zur Fragment- Erweiterung, die sich mit hoher Wahrscheinlichkeit an die Zielstruktur anlagern, und stellt somit ein nützliches und kreatives Werkzeug zur Untersuchung von Struktur-Wirkungsbeziehungen („structure-activity relationship“ – SAR) dar. SCUBIDOO zeigte sich mit einem bisherigen 53-prozentigen Synthese-Erfolg als zugänglich für die Integration an die effiziente automatisierte Roboter-Synthese. Jede zukünftige Synthese liefert neue Kenntnisse innerhalb der Datenbank und wird somit nach und nach den Synthese-Erfolg erhöhen. Des Weiteren stellen alle synthetisierten Produkte neuartige Verbindungen dar, was umso mehr den möglichen Einfluss SCUBIDOOs bei der Entdeckung neuer chemischer Strukturen hervorhebt

    Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness

    Full text link
    The phenomenology of velocity statistics in turbulent flows, up to now, relates to different models dealing with either signed or unsigned longitudinal velocity increments, with either inertial or dissipative fluctuations. In this paper, we are concerned with the complete probability density function (PDF) of signed longitudinal increments at all scales. First, we focus on the symmetric part of the PDFs, taking into account the observed departure from scale invariance induced by dissipation effects. The analysis is then extended to the asymmetric part of the PDFs, with the specific goal to predict the skewness of the velocity derivatives. It opens the route to the complete description of all measurable quantities, for any Reynolds number, and various experimental conditions. This description is based on a single universal parameter function D(h) and a universal constant R*.Comment: 13 pages, 3 figures, Extended version, Publishe
    • …
    corecore