6 research outputs found

    Ageing and endurance training effects on quantity and quality of pulmonary vascular bed in healthy men

    Get PDF
    International audienceIt has recently been demonstrated that in healthy individuals, peak oxygen consumption is associated with a greater pulmonary capillary blood volume and a more distensible pulmonary circulation. Our cross-sectional study suggests that, in healthy men aged 20 to 60 years (n = 63), endurance sport practice (vigorous-intensity domain of the International Physical Activity Questionnaire) is associated with better quantity (pulmonary capillary blood volume) and quality (slope of increase in lung diffusion for carbon monoxide on exercise) of the pulmonary vascular bed, partly counterbalancing the deleterious effects of ageing, which remains to be demonstrated in a prospective longitudinal design

    Endurance-training in healthy men is associated with lesser exertional breathlessness that correlates with circulatory-muscular conditioning markers in a cross-sectional design.

    Get PDF
    International audienceWhether exertional dyspnoea can be attributed to poor circulatory-muscular conditioning is a difficult clinical issue. Because criteria of poor conditioning such as low oxygen pulse, low ventilatory threshold or high heart rate/oxygen consumption slope can be observed in heart or lung diseases and are not specific to conditioning, we assessed the relationships between physical exercise, conditioning and exertional breathlessness in healthy subjects, in whom the aforementioned criteria can confidently be interpreted as reflecting conditioning. To this end, healthy males with either low (inactive men, n = 31) or high (endurance-trained men, n = 31) physical activity evaluated using the International Physical Activity Questionnaire (IPAQ) underwent spirometry and incremental exercise testing with breathlessness assessment using Borg scale. No significant breathlessness was reported before the ventilatory threshold in the two groups. Peak breathlessness was highly variable, did not differ between the two groups, was not related to any conditioning criterion, but correlated with peak respiratory rate. Nevertheless, endurance-trained subjects reported lower breathlessness at the same ventilation levels in comparison with inactive subjects. Significant but weak associations were observed between isoventilation breathlessness and physical activity indices (Borg at 60 L/min and total IPAQ scores, rho = -0.31, p = 0.020), which were mainly attributable to the vigorous domain of physical activity, as well as with conditioning indices (Borg score at 60 L.min(-1) and peak oxygen pulse or heart rate/oxygen consumption slope, rho = -0.31, p = 0.021 and rho = 0.31, p = 0.020; respectively). In conclusion, our data support a weak relationship between exertional breathlessness and circulatory-muscular conditioning, the later being primarily related to vigorous physical activity
    corecore