27 research outputs found

    MicroRNAs in the Functional Defects of Skin Aging

    Get PDF
    Humankind has always been intrigued by death, as illustrated by the eternal quest for the fountain of youth. Aging is a relentless biological process slowly progressing as life cycle proceeds. Indeed, aging traduces an accumulation of physiological changes over time that render organisms more likely to die. Thus, despite our mastery of advanced technologies and robust medical knowledge, defining the molecular basis of aging to control lifespan is still currently one of the greatest challenges in biology. In mammals, the skin is the ultimate multitasker vital organ, protecting organisms from the world they live in. As a preferential interface with the environment, the skin is reflecting the internal physiological balances. The maintenance of these balances, called homeostasis, depends on the concurrent assimilation of diversified signals at the cellular level. MicroRNAs (miRNAs) are noncoding RNAs that regulate gene expression by mRNAs degradation or translational repression. Their relatively recent discovery in 2000 provided new insights into the understanding of the gene regulatory networks. In this chapter, we focused on the role of three miRNA families, namely miR-30, miR-200, and miR-181, playing a key role in the progression of the skin aging process, with particular input in mechanistic considerations related to autophagy, oxidative stress, and mitochondrial homeostasis

    Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis

    Get PDF
    Transient Receptor Potential Vanilloid (TRPV) channels are expressed in various skin cells, including non-neuronal cell types such as epidermal keratinocytes. They are polymodal sensors of the environment, regulating physiological function in response to a wide variety of stimuli. Indeed, in addition to their significant role in thermal responses and thermoregulation, TRPV channels are also implicated in local skin inflammation processes. Thus, these calcium permeable channels are associated to multiples skin diseases with inflammation, such as atopic dermatitis or psoriasis. In this chapter, we will mainly focus on TRPV1 and TRPV3 channels, as emerging pivotal targets for maintaining skin homeostasis in psoriasis-related inflammation

    FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae

    Get PDF
    Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF
    corecore