18,562 research outputs found

    Nonperturbative Determination of Heavy Meson Bound States

    Get PDF
    In this paper we obtain a heavy meson bound state equation from the heavy quark equation of motion in heavy quark effective theory (HQET) and the heavy meson effective field theory we developed very recently. The bound state equation is a covariant extention of the light-front bound state equation for heavy mesons derived from light-front QCD and HQET. We determine the covariant heavy meson wave function variationally by minimizing the binding energy Λˉ\bar{\Lambda}. Subsequently the other basic HQET parameters λ1\lambda_1 and λ2\lambda_2, and the heavy quark masses mbm_b and mcm_c can also be consistently determined.Comment: 15 pages, 1 figur

    Explicit Zeta Functions for Bosonic and Fermionic Fields on a Noncommutative Toroidal Spacetime

    Full text link
    Explicit formulas for the zeta functions ζα(s)\zeta_\alpha (s) corresponding to bosonic (α=2\alpha =2) and to fermionic (α=3\alpha =3) quantum fields living on a noncommutative, partially toroidal spacetime are derived. Formulas for the most general case of the zeta function associated to a quadratic+linear+constant form (in {\bf Z}) are obtained. They provide the analytical continuation of the zeta functions in question to the whole complex s−s-plane, in terms of series of Bessel functions (of fast, exponential convergence), thus being extended Chowla-Selberg formulas. As well known, this is the most convenient expression that can be found for the analytical continuation of a zeta function, in particular, the residua of the poles and their finite parts are explicitly given there. An important novelty is the fact that simple poles show up at s=0s=0, as well as in other places (simple or double, depending on the number of compactified, noncompactified, and noncommutative dimensions of the spacetime), where they had never appeared before. This poses a challenge to the zeta-function regularization procedure.Comment: 15 pages, no figures, LaTeX fil

    Coherent phenomena in mesoscopic systems

    Full text link
    A mesoscopic system of cylindrical geometry made of a metal or a semiconductor is shown to exhibit features of a quantum coherent state. It is shown that magnetostatic interaction can play an important role in mesoscopic systems leading to an ordered ground state. The temperature T∗T^{*} below the system exhibits long-range order is determined. The self-consistent mean field approximation of the magnetostatic interaction is performed giving the effective Hamiltonian from which the self-sustaining currents can be obtained. The relation of quantum coherent state in mesoscopic cylinders to other coherent systems like superconductors is discussed.Comment: REVTeX, 4 figures, in print in Supercond. Sci. Techno

    Persistent Current of Free Electrons in the Plane

    Full text link
    Predictions of Akkermans et al. are essentially changed when the Krein spectral displacement operator is regularized by means of zeta function. Instead of piecewise constant persistent current of free electrons on the plane one has a current which varies linearly with the flux and is antisymmetric with regard to all time preserving values of α\alpha including 1/21/2. Different self-adjoint extensions of the problem and role of the resonance are discussed.Comment: (Comment on "Relation between Persistent Currents and the Scattering Matrix", Phys. Rev. Lett. {\bf 66}, 76 (1991)) plain latex, 4pp., IPNO/TH 94-2

    A Crucial Test for Color-Octet Production Mechanism in Z^0 Decays

    Full text link
    The direct production rates of DD-wave charmonia in the decays of Z0Z^0 is evaluated. The color-octet production processes Z0→3DJ(ccˉ)qqˉZ^0\rightarrow ^3D_J(c\bar c) q\bar q are shown to have distinctively large branching ratios, the same order of magnitude as that of J/ψJ/\psi prodution, as compared with other DD-wave charmonium production mechanisms. This may suggest a crucial channel to test the color-octet mechanism as well as to observe the DD-wave charmonium states in Z0Z^0 decays. In addition, a signal for the 3DJ^3D_J charmonium as strong as J/ψJ/\psi or ψ′\psi^\prime with large transverse momentum at the Tevatron should also be observed.Comment: 14 pages in LaTex (3 figures in PS-file

    Sprinkle Your Investment Portfolio with Water!

    Get PDF
    This paper investigates the profitability of water-related investments and their diversification benefits in a portfolio context. Motivated by the need to understand whether or not water indices and water funds are desirable vehicles for investment, we analyse the performance of a major water index independently, as well as within portfolios. Our results indicate that the water asset class outperforms traditional asset classes, and has the capacity to produce diversification effects in portfolios primarily comprised of listed equity and bond assets. In addition, our study suggests that the diversification benefits of the water asset class are likely to be a result of its superior performance over the stock benchmark, rather than its low correlation with traditional asset classes. Our study provides a valuable contribution to the small, yet growing body of literature on water investments
    • …
    corecore