research

Explicit Zeta Functions for Bosonic and Fermionic Fields on a Noncommutative Toroidal Spacetime

Abstract

Explicit formulas for the zeta functions ζα(s)\zeta_\alpha (s) corresponding to bosonic (α=2\alpha =2) and to fermionic (α=3\alpha =3) quantum fields living on a noncommutative, partially toroidal spacetime are derived. Formulas for the most general case of the zeta function associated to a quadratic+linear+constant form (in {\bf Z}) are obtained. They provide the analytical continuation of the zeta functions in question to the whole complex ss-plane, in terms of series of Bessel functions (of fast, exponential convergence), thus being extended Chowla-Selberg formulas. As well known, this is the most convenient expression that can be found for the analytical continuation of a zeta function, in particular, the residua of the poles and their finite parts are explicitly given there. An important novelty is the fact that simple poles show up at s=0s=0, as well as in other places (simple or double, depending on the number of compactified, noncompactified, and noncommutative dimensions of the spacetime), where they had never appeared before. This poses a challenge to the zeta-function regularization procedure.Comment: 15 pages, no figures, LaTeX fil

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 30/01/2019