291 research outputs found
Solitons on Branes
We examine the possibility that gauge field configurations on stacks of
parallel Dp branes support topological solitons. We give an exhaustive list of
possible soliton charges for p<7. We also discuss how configurations carrying
the soliton charges can be constructed from intersecting branes.Comment: 15 pages, 2 figures; v2: two references added, version to be
published in Nucl.Phys.
Implications of the Muon Anomalous Magnetic Moment for Supersymmetry
We re-examine the bounds on supersymmetric particle masses in light of the
E821 data on the muon anomalous magnetic moment. We confirm, extend and
supersede previous bounds. In particular we find (at one sigma) no lower limit
on tan(beta) or upper limit on the chargino mass implied by the data at
present, but at least 4 sparticles must be lighter than 700 to 820 GeV and at
least one sparticle must be lighter than 345 to 440 GeV. However, the E821
central value bounds tan(beta) > 4.7 and the lighter chargino mass by 690 GeV.
For tan(beta) < 10, the data indicates a high probability for direct discovery
of SUSY at Run II or III of the Tevatron.Comment: 20 pages LaTeX, 14 figures; references adde
Families of N=2 Strings
In a given 4d spacetime bakcground, one can often construct not one but a
family of distinct N=2 string theories. This is due to the multiple ways N=2
superconformal algebra can be embedded in a given worldsheet theory. We
formulate the principle of obtaining different physical theories by gauging
different embeddings of the same symmetry algebra in the same ``pre-theory.''
We then apply it to N=2 strings and formulate the recipe for finding the
associated parameter spaces of gauging. Flat and curved target spaces of both
(4,0) and (2,2) signatures are considered. We broadly divide the gauging
choices into two classes, denoted by alpha and beta, and show them to be
related by T-duality. The distinction between them is formulated topologically
and hinges on some unique properties of 4d manifolds. We determine what their
parameter spaces of gauging are under certain simplicity ansatz for generic
flat spaces (R^4 and its toroidal compactifications) as well as some curved
spaces. We briefly discuss the spectra of D-branes for both alpha and beta
families.Comment: 66+1 pages, 2 tables, latex 2e, hyperref. ver2: typos corrected,
reference adde
Quantum Radiation from a 5-Dimensional Rotating Black Hole
We study a massless scalar field propagating in the background of a
five-dimensional rotating black hole. We showed that in the Myers-Perry metric
describing such a black hole the massless field equation allows the separation
of variables. The obtained angular equation is a generalization of the equation
for spheroidal functions. The radial equation is similar to the radial
Teukolsky equation for the 4-dimensional Kerr metric. We use these results to
quantize the massless scalar field in the space-time of the 5-dimensional
rotating black hole and to derive expressions for energy and angular momentum
fluxes from such a black hole.Comment: references added, accepted for publication in Physical Review
Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory
We study D-branes and Ramond-Ramond fields on global orbifolds of Type II
string theory with vanishing H-flux using methods of equivariant K-theory and
K-homology. We illustrate how Bredon equivariant cohomology naturally realizes
stringy orbifold cohomology. We emphasize its role as the correct cohomological
tool which captures known features of the low-energy effective field theory,
and which provides new consistency conditions for fractional D-branes and
Ramond-Ramond fields on orbifolds. We use an equivariant Chern character from
equivariant K-theory to Bredon cohomology to define new Ramond-Ramond couplings
of D-branes which generalize previous examples. We propose a definition for
groups of differential characters associated to equivariant K-theory. We derive
a Dirac quantization rule for Ramond-Ramond fluxes, and study flat
Ramond-Ramond potentials on orbifolds.Comment: 46 pages; v2: typos correcte
The Enhancon, Black Holes, and the Second Law
We revisit the physics of five-dimensional black holes constructed from D5-
and D1-branes and momentum modes in type IIB string theory compactified on K3.
Since these black holes incorporate D5-branes wrapped on K3, an enhancon locus
appears in the spacetime geometry. With a `small' number of D1-branes, the
entropy of a black hole is maximised by including precisely half as many
D5-branes as there are D1-branes in the black hole. Any attempts to introduce
more D5-branes, and so reduce the entropy, are thwarted by the appearance of
the enhancon locus above the horizon, which then prevents their approach. The
enhancon mechanism thereby acts to uphold the Second Law of Thermodynamics.
This result generalises: For each type of bound state object which can be made
of both types of brane, we show that a new type of enhancon exists at
successively smaller radii in the geometry, again acting to prevent any
reduction of the entropy just when needed. We briefly explore the appearance of
the enhancon in the black hole interior.Comment: 22 pages, 2 figures, latex, epsfig (v2: Fixed trivial typos.
Is null-point reconnection important for solar flux emergence?
The role of null-point reconnection in a 3D numerical MHD model of solar
emerging flux is investigated. The model consists of a twisted magnetic flux
tube rising through a stratified convection zone and atmosphere to interact and
reconnect with a horizontal overlying magnetic field in the atmosphere. Null
points appear as the reconnection begins and persist throughout the rest of the
emergence, where they can be found mostly in the model photosphere and
transition region, forming two loose clusters on either side of the emerging
flux tube. Up to 26 nulls are present at any one time, and tracking in time
shows that there is a total of 305 overall, despite the initial simplicity of
the magnetic field configuration. We find evidence for the reality of the nulls
in terms of their methods of creation and destruction, their balance of signs,
their long lifetimes, and their geometrical stability. We then show that due to
the low parallel electric fields associated with the nulls, null-point
reconnection is not the main type of magnetic reconnection involved in the
interaction of the newly emerged flux with the overlying field. However, the
large number of nulls implies that the topological structure of the magnetic
field must be very complex and the importance of reconnection along separators
or separatrix surfaces for flux emergence cannot be ruled out.Comment: 26 pages, 12 figures. Added one referenc
Large Extra Dimensions and Decaying KK Recurrences
We suggest the possibility that in ADD type brane-world scenarios, the higher
KK excitations of the graviton may decay to lower ones owing to a breakdown of
the conservation of extra dimensional ``momenta'' and study its implications
for astrophysics and cosmology. We give an explicit realization of this idea
with a bulk scalar field , whose nonzero KK modes acquire vacuum
expectation values. This scenario helps to avoid constraints on large extra
dimensions that come from gamma ray flux bounds in the direction of nearby
supernovae as well as those coming from diffuse cosmological gamma ray
background. It also relaxes the very stringent limits on reheat temperature of
the universe in ADD models.Comment: 16 pages, late
The Weak Charge of the Proton and New Physics
We address the physics implications of a precision determination of the weak
charge of the proton, QWP, from a parity violating elastic electron proton
scattering experiment to be performed at the Jefferson Laboratory. We present
the Standard Model (SM) expression for QWP including one-loop radiative
corrections, and discuss in detail the theoretical uncertainties and missing
higher order QCD corrections. Owing to a fortuitous cancellation, the value of
QWP is suppressed in the SM, making it a unique place to look for physics
beyond the SM. Examples include extra neutral gauge bosons, supersymmetry, and
leptoquarks. We argue that a QWP measurement will provide an important
complement to both high energy collider experiments and other low energy
electroweak measurements. The anticipated experimental precision requires the
knowledge of the order alpha_s corrections to the pure electroweak box
contributions. We compute these contributions for QWP, as well as for the weak
charges of heavy elements as determined from atomic parity violation.Comment: 22 pages of LaTeX, 5 figure
Lepton Dipole Moments and Rare Decays in the CP-violating MSSM with Nonuniversal Soft-Supersymmetry Breaking
We investigate the muon anomalous magnetic dipole moment (MDM), the muon
electric dipole moment (EDM) and the lepton-flavour-violating decays of the
lepton, and , in the CP-violating
Minimal Supersymmetric Standard Model (MSSM) with nonuniversal
soft-supersymmetry breaking. We evaluate numerically the muon EDM and the
branching ratios and , after taking
into account the experimental constraints from the electron EDM and muon MDM.
Upon imposition of the experimental limits on our theoretical predictions for
the aforementioned branching ratios and the muon MDM, we obtain an upper bound
of about on the muon EDM which lies well within the
explorable reach of the proposed experiment at BNL.Comment: Latex, 26 pages, 8 figures, accepted for publication in Phys. Rev.
- …