185 research outputs found
Multiclass microarray gene expression classification based on fusion of correlation features
In this paper, we propose novel algorithmic models based on fusion of independent and correlated gene features for multiclass microarray gene expression classification. It is possible for genes to get co-expressed via different pathways. Moreover, a gene may or may not be co-active for all samples. In this paper, we approach this problem with a optimal feature selection technique using analysis based on statistical techniques to model the complex interactions between genes. The two different types of correlation modelling techniques based on the cross modal factor analysis (CFA) and canonical correlation analysis (CCA) were examined. The subsequent fusion of CCA/CFA features with principal component analysis (PCA) features at feature-level, and at score-level result in significant enhancement in classification accuracy for different data sets corresponding to multiclass microarray gene expression data
Multi-Level Liveness Verification for Face-Voice Biometric Authentication
In this paper we present the details of the multilevel liveness verification (MLLV) framework proposed for realizing a secure face-voice biometric authentication system that can thwart different types of audio and video replay attacks. The proposed MLLV framework based on novel feature extraction and multimodal fusion approaches, uncovers the static and dynamic relationship between voice and face information from speaking faces, and allows multiple levels of security. Experiments with three different speaking corpora VidTIMIT, UCBN and AVOZES shows a significant improvement in system performance in terms of DET curves and equal error rates(EER) for different types of replay and synthesis attacks
- …