998 research outputs found
The "ART" of Linkage: Pre-Treatment Loss to Care after HIV Diagnosis at Two PEPFAR Sites in Durban, South Africa
BACKGROUND. Although loss to follow-up after antiretroviral therapy (ART) initiation is increasingly recognized, little is known about pre-treatment losses to care (PTLC) after an initial positive HIV test. Our objective was to determine PTLC in newly identified HIV-infected individuals in South Africa. METHODOLOGY/PRINCIPAL FINDINGS. We assembled the South African Test, Identify and Link (STIAL) Cohort of persons presenting for HIV testing at two sites offering HIV and CD4 count testing and HIV care in Durban, South Africa. We defined PTLC as failure to have a CD4 count within 8 weeks of HIV diagnosis. We performed multivariate analysis to identify factors associated with PTLC. From November 2006 to May 2007, of 712 persons who underwent HIV testing and received their test result, 454 (64%) were HIV-positive. Of those, 206 (45%) had PTLC. Infected patients were significantly more likely to have PTLC if they lived =10 kilometers from the testing center (RR=1.37; 95% CI: 1.11-1.71), had a history of tuberculosis treatment (RR=1.26; 95% CI: 1.00-1.58), or were referred for testing by a health care provider rather than self-referred (RR=1.61; 95% CI: 1.22-2.13). Patients with one, two or three of these risks for PTLC were 1.88, 2.50 and 3.84 times more likely to have PTLC compared to those with no risk factors. CONCLUSIONS/SIGNIFICANCE. Nearly half of HIV-infected persons at two high prevalence sites in Durban, South Africa, failed to have CD4 counts following HIV diagnosis. These high rates of pre-treatment loss to care highlight the urgent need to improve rates of linkage to HIV care after an initial positive HIV test.US National Institute of Allergy and Infectious Diseases (R01 AI058736, K24 AI062476, K23 AI068458); the Harvard University Center for AIDS Research (P30 AI42851); National Institutes of Health (K24 AR 02123); the Doris Duke Charitable Foundation (Clinical Scientist Development Award); the Harvard University Program on AID
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
The influence of surface stress on the equilibrium shape of strained quantum dots
The equilibrium shapes of InAs quantum dots (i.e., dislocation-free, strained
islands with sizes >= 10,000 atoms) grown on a GaAs (001) substrate are studied
using a hybrid approach which combines density functional theory (DFT)
calculations of microscopic parameters, surface energies, and surface stresses
with elasticity theory for the long-range strain fields and strain relaxations.
In particular we report DFT calculations of the surface stresses and analyze
the influence of the strain on the surface energies of the various facets of
the quantum dot. The surface stresses have been neglected in previous studies.
Furthermore, the influence of edge energies on the island shapes is briefly
discussed. From the knowledge of the equilibrium shape of these islands, we
address the question whether experimentally observed quantum dots correspond to
thermal equilibrium structures or if they are a result of the growth kinetics.Comment: 7 pages, 8 figures, submitted to Phys. Rev. B (February 2, 1998).
Other related publications can be found at
http://www.rz-berlin.mpg.de/th/paper.htm
Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators
A new method is presented for performing first-principles molecular-dynamics
simulations of systems with variable occupancies. We adopt a matrix
representation for the one-particle statistical operator Gamma, to introduce a
``projected'' free energy functional G that depends on the Kohn-Sham orbitals
only and that is invariant under their unitary transformations. The Liouville
equation [ Gamma , H ] = 0 is always satisfied, guaranteeing a very efficient
and stable variational minimization algorithm that can be extended to
non-conventional entropic formulations or fictitious thermal distributions.Comment: 5 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#nm_meta
Competition between Magnetic and Structural Transition in CrN
CrN is observed to undergo a paramagnetic to antiferromagnetic transition
accompanied by a shear distortion from cubic NaCl-type to orthorhombic
structure. Our first-principle plane wave and ultrasoft pseudopotential
calculations confirm that the distorted antiferromagnetic phase with spin
configuration arranged in double ferromagnetic sheets along [110] is the most
stable. Antiferromagnetic ordering leads to a large depletion of states around
Fermi level, but it does not open a gap. Simultaneous occurence of structural
distortion and antiferromagnetic order is analyzed.Comment: 10 pages, 10 figure
A Geometric Formulation of Quantum Stress Fields
We present a derivation of the stress field for an interacting quantum system
within the framework of local density functional theory. The formulation is
geometric in nature and exploits the relationship between the strain tensor
field and Riemannian metric tensor field. Within this formulation, we
demonstrate that the stress field is unique up to a single ambiguous parameter.
The ambiguity is due to the non-unique dependence of the kinetic energy on the
metric tensor. To illustrate this formalism, we compute the pressure field for
two phases of solid molecular hydrogen. Furthermore, we demonstrate that
qualitative results obtained by interpreting the hydrogen pressure field are
not influenced by the presence of the kinetic ambiguity.Comment: 22 pages, 2 figures. Submitted to Physical Review B. This paper
supersedes cond-mat/000627
Au/TiO2(110) interfacial reconstruction stability from ab initio
We determine the stability and properties of interfaces of low-index Au
surfaces adhered to TiO2(110), using density functional theory energy density
calculations. We consider Au(100) and Au(111) epitaxies on rutile TiO2(110)
surface, as observed in experiments. For each epitaxy, we consider several
different interfaces: Au(111)//TiO2(110) and Au(100)//TiO2(110), with and
without bridging oxygen, Au(111) on 1x2 added-row TiO2(110) reconstruction, and
Au(111) on a proposed 1x2 TiO reconstruction. The density functional theory
energy density method computes the energy changes on each of the atoms while
forming the interface, and evaluates the work of adhesion to determine the
equilibrium interfacial structure.Comment: 20 pages, 11 figure
An Unsupervised Autoencoder Developed from Dynamic Contrast-Enhanced (DCE)-MRI Datasets for Classification of Acute Tumor Response in an Animal Model
Purpose/Objective(s): Recent studies have shown that vascular parameters of brain tumors derived from DCE-MRI may act as potential biomarkers for radiation-induced acute effects. However, accurate characterization of the spatial regions affected by radiation therapy (RT) remains challenging. Here, we introduce an unsupervised adaptive model for classification and ranking of the RT-affected regions in an animal model of cerebral U-251n tumors.
Materials/Methods: Twenty-three immune-compromised-RNU rats were implanted with human U251n cancer cells to form an orthotopic glioma (IACUC #1509). For each rat, 28 days after implantation, two DCE-MRI studies (Dual Gradient Echo, DGE, FOV: 32 × 32 mm2, TR/(TE1-TE2) = 24 ms/(2 ms-4 ms), flip angle = 18°, 400 acquisitions, 1.55 sec interval with Magnevist contrast agent, CA injection at ∼ 24 sec) were performed 24h apart using a 7T MRI scanner. A single 20 Gy stereotactic radiation exposure was performed before the second MRI, which was acquired 1-6.5 hrs after RT. DCE-MRI analysis was done using a model selection technique to distinguish three different brain regions as follows: Normal vasculature (Model 1: No leakage, only plasma volume, vp, is estimated), leaky tumor tissues with no back-flux to the vasculature (Model 2: vp and forward volumetric transfer constant, Ktrans, are estimated), and leaky tumor tissues with back-flux (Model 3: vp, Ktrans, and interstitial volume fraction, ve, are estimated). Normalized time traces of DCE-MRI information (24 pre, and 24 post-RT for each rat, total of 64108 training datasets) of tumors and their soft surrounding normal tissues were extracted from the 3 different model regions. To eliminate high-dimensional data similarity, an unsupervised autoencoder (AE) was trained to map out the model-derived data into a feature space (latent variables, N=10). For each model, the pre and post RT latent variables were compared (by appropriate tests of significance: ANOVA/Welch, CI=95%) to reveal RT-discriminant features. Pearson correlation coefficients were used to compare the decoded data to rank the effect of RT on different models.
Results: The time trace of DCE-MRI information of rat brain in normal (Model 1, non-leaky) and highly permeable (Model 3) regions are less impacted by RT (Higher correlation between pre and post RT: r= 0.8518, p\u3c0.0001 and r= 0.9040, p\u3c0.0001 for Model 1 and Model 3, respectively) compared to the peritumoral regions pertaining to Model 2 (r= 0.8077, p\u3c0.0001).
Conclusion: This pilot study suggests that among different brain regions, peritumoral zones (infiltrative tumor borders with enhanced rim) are highly affected by RT. Spatial assessment of RT-affected brain regions can play a key role in optimization of treatment planning in cancer patients, but presents a challenging task in conventional DCE-MRI. This study represents an important step toward classification and ranking the RT-affected brain spatial regions according to their vascular response following hypofractionated RT
First-principles calculations of the self-trapped exciton in crystalline NaCl
The atomic and electronic structure of the lowest triplet state of the
off-center (C2v symmetry) self-trapped exciton (STE) in crystalline NaCl is
calculated using the local-spin-density (LSDA) approximation. In addition, the
Franck-Condon broadening of the luminescence peak and the a1g -> b3u absorption
peak are calculated and compared to experiment. LSDA accurately predicts
transition energies if the initial and final states are both localized or
delocalized, but 1 eV discrepancies with experiment occur if one state is
localized and the other is delocalized.Comment: 4 pages with 4 embeddded figure
- …