40 research outputs found

    Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter

    Get PDF
    Objective: To date, many brain-machine interface (BMI) studies have developed decoding algorithms for neuroprostheses that provide users with precise control of upper arm reaches with some limited grasping capabilities. However, comparatively few have focused on quantifying the performance of precise finger control. Here we expand upon this work by investigating online control of individual finger groups.Approach: We have developed a novel training manipulandum for non-human primate (NHP) studies to isolate the movements of two specific finger groups: index and middle-ring-pinkie (MRP) fingers. We use this device in combination with the ReFIT (Recalibrated Feedback Intention-Trained) Kalman filter to decode the position of each finger group during a single degree of freedom task in two rhesus macaques with Utah arrays in motor cortex. The ReFIT Kalman filter uses a two-stage training approach that improves online control of upper arm tasks with substantial reductions in orbiting time, thus making it a logical first choice for precise finger control.Results: Both animals were able to reliably acquire fingertip targets with both index and MRP fingers, which they did in blocks of finger group specific trials. Decoding from motor signals online, the ReFIT Kalman filter reliably outperformed the standard Kalman filter, measured by bit rate, across all tested finger groups and movements by 31.0 and 35.2%. These decoders were robust when the manipulandum was removed during online control. While index finger movements and middle-ring-pinkie finger movements could be differentiated from each other with 81.7% accuracy across both subjects, the linear Kalman filter was not sufficient for decoding both finger groups together due to significant unwanted movement in the stationary finger, potentially due to co-contraction.Significance: To our knowledge, this is the first systematic and biomimetic separation of digits for continuous online decoding in a NHP as well as the first demonstration of the ReFIT Kalman filter improving the performance of precise finger decoding. These results suggest that novel nonlinear approaches, apparently not necessary for center out reaches or gross hand motions, may be necessary to achieve independent and precise control of individual fingers

    The future of upper extremity rehabilitation robotics: research and practice

    Full text link
    The loss of upper limb motor function can have a devastating effect on people’s lives. To restore upper limb control and functionality, researchers and clinicians have developed interfaces to interact directly with the human body’s motor system. In this invited review, we aim to provide details on the peripheral nerve interfaces and brain‐machine interfaces that have been developed in the past 30 years for upper extremity control, and we highlight the challenges that still remain to transition the technology into the clinical market. The findings show that peripheral nerve interfaces and brain‐machine interfaces have many similar characteristics that enable them to be concurrently developed. Decoding neural information from both interfaces may lead to novel physiological models that may one day fully restore upper limb motor function for a growing patient population.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/1/mus26860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155489/2/mus26860.pd

    Upper limb prostheses: bridging the sensory gap

    Get PDF
    Replacing human hand function with prostheses goes far beyond only recreating muscle movement with feedforward motor control. Natural sensory feedback is pivotal for fine dexterous control and finding both engineering and surgical solutions to replace this complex biological function is imperative to achieve prosthetic hand function that matches the human hand. This review outlines the nature of the problems underlying sensory restitution, the engineering methods that attempt to address this deficit and the surgical techniques that have been developed to integrate advanced neural interfaces with biological systems. Currently, there is no single solution to restore sensory feedback. Rather, encouraging animal models and early human studies have demonstrated that some elements of sensation can be restored to improve prosthetic control. However, these techniques are limited to highly specialized institutions and much further work is required to reproduce the results achieved, with the goal of increasing availability of advanced closed loop prostheses that allow sensory feedback to inform more precise feedforward control movements and increase functionality

    Design and testing of a 96-channel neural interface module for the Networked Neuroprosthesis system

    Full text link
    Abstract Background The loss of motor functions resulting from spinal cord injury can have devastating implications on the quality of one’s life. Functional electrical stimulation has been used to help restore mobility, however, current functional electrical stimulation (FES) systems require residual movements to control stimulation patterns, which may be unintuitive and not useful for individuals with higher level cervical injuries. Brain machine interfaces (BMI) offer a promising approach for controlling such systems; however, they currently still require transcutaneous leads connecting indwelling electrodes to external recording devices. While several wireless BMI systems have been designed, high signal bandwidth requirements limit clinical translation. Case Western Reserve University has developed an implantable, modular FES system, the Networked Neuroprosthesis (NNP), to perform combinations of myoelectric recording and neural stimulation for controlling motor functions. However, currently the existing module capabilities are not sufficient for intracortical recordings. Methods Here we designed and tested a 1 × 4 cm, 96-channel neural recording module prototype to fit within the specifications to mate with the NNP. The neural recording module extracts power between 0.3–1 kHz, instead of transmitting the raw, high bandwidth neural data to decrease power requirements. Results The module consumed 33.6 mW while sampling 96 channels at approximately 2 kSps. We also investigated the relationship between average spiking band power and neural spike rate, which produced a maximum correlation of R = 0.8656 (Monkey N) and R = 0.8023 (Monkey W). Conclusion Our experimental results show that we can record and transmit 96 channels at 2ksps within the power restrictions of the NNP system and successfully communicate over the NNP network. We believe this device can be used as an extension to the NNP to produce a clinically viable, fully implantable, intracortically-controlled FES system and advance the field of bioelectronic medicine.https://deepblue.lib.umich.edu/bitstream/2027.42/147921/1/42234_2019_Article_19.pd

    Microcontroller-based wireless recording unit for neurodynamic studies in saltwater

    No full text
    Journal ArticleThis paper presents the design of a biocompatible implantable neural-recording unit for Aplysia californica, which is a common sea slug. Low-voltage extracellular neural signals (< 250 μV) are recorded using a high-performance low-power low-noise preamplifier that is packaged with programmable digital data acquisition and control, and frequency-shift keying (FSK) telemetry that provides 5-kb/s wireless neural data through 18 cm of saltwater. The telemetry utilizes an 8-cm electric-dipole antenna matched to 50 Ω by exposing the ends of the antenna to the saltwater. A custom 27-MHz receiver has been developed using commercially available ICs. A clock data recovery algorithm is implemented in a microcontroller to synchronize the received data. A 3-V lithium-ion battery (160 mAh) allows 16 h of recording. Neural data obtained using extracellular nerve electrodes and a wired interface to this unit exhibit a 2.5-mV-rms noise, which is comparable to a commercial neural-recording equipment. Neural data were also collected through the wireless link, demonstrating the feasibility of low-power transmission through saltwater

    HermesC: low-power wireless neural recording system for freely moving primates

    No full text
    Journal ArticleNeural prosthetic systems have the potential to restore lost functionality to amputees or patients suffering from neurological injury or disease. Current systems have primarily been designed for immobile patients, such as tetraplegics functioning in a rather static, carefully tailored environment. However, an active patient such as amputee in a normal dynamic, everyday environment may be quite different in terms of the neural control of movement. In order to study motor control in a more unconstrained natural setting, we seek to develop an animal model of freely moving humans. Therefore, we have developed and tested HermesC-INI3, a system for recording and wirelessly transmitting neural data from electrode arrays implanted in rhesus macaques who are freely moving. This system is based on the integrated neural interface (INI3) microchip which amplifies, digitizes, and transmits neural data across a ~ 900 MHz wireless channel. The wireless transmission has a range of ~4 in free space. All together this device consumes 15.8 mA and 63.2 mW. On a singl

    Factors associated with interest in novel interfaces for upper limb prosthesis control

    No full text
    <div><p>Background</p><p>Surgically invasive interfaces for upper limb prosthesis control may allow users to operate advanced, multi-articulated devices. Given the potential medical risks of these invasive interfaces, it is important to understand what factors influence an individual’s decision to try one.</p><p>Methods</p><p>We conducted an anonymous online survey of individuals with upper limb loss. A total of 232 participants provided personal information (such as age, amputation level, etc.) and rated how likely they would be to try noninvasive (myoelectric) and invasive (targeted muscle reinnervation, peripheral nerve interfaces, cortical interfaces) interfaces for prosthesis control. Bivariate relationships between interest in each interface and 16 personal descriptors were examined. Significant variables from the bivariate analyses were then entered into multiple logistic regression models to predict interest in each interface.</p><p>Results</p><p>While many of the bivariate relationships were significant, only a few variables remained significant in the regression models. The regression models showed that participants were more likely to be interested in all interfaces if they had unilateral limb loss (p ≤ 0.001, odds ratio ≥ 2.799). Participants were more likely to be interested in the three invasive interfaces if they were younger (p < 0.001, odds ratio ≤ 0.959) and had acquired limb loss (p ≤ 0.012, odds ratio ≥ 3.287). Participants who used a myoelectric device were more likely to be interested in myoelectric control than those who did not (p = 0.003, odds ratio = 24.958).</p><p>Conclusions</p><p>Novel prosthesis control interfaces may be accepted most readily by individuals who are young, have unilateral limb loss, and/or have acquired limb loss However, this analysis did not include all possible factors that may have influenced participant’s opinions on the interfaces, so additional exploration is warranted.</p></div
    corecore