7 research outputs found

    Measuring temporal resolution during a fearful event.

    No full text
    <p>(a) When a digit is alternated slowly with its negative image, it is easy to identify. (b) As the rate of alternation speeds, the patterns fuse into a uniform field, indistinguishable from any other digit and its negative. (c) The perceptual chronometer is engineered to display digits defined by rapidly alternating LED lights on two 8×8 arrays. The internal microprocessor randomizes the digits and can display them adjustably from 1–166 Hz. (d) The Suspended Catch Air Device (SCAD) diving tower at the Zero Gravity amusement park in Dallas, Texas (<a href="http://www.gojump.com" target="_blank">www.gojump.com</a>). Participants are released from the apex of the tower and fall backward for 31 m before landing safely in a net below.</p

    No evidence for fear-induced increase in temporal resolution.

    No full text
    <p>(a) Participants' estimates of the duration of the free-fall were expanded by 36%. The actual duration of the fall was 2.49 sec. (b) If a duration expansion of 36% caused a corresponding increase in temporal resolution, a 79% accuracy in digit identification during the fall would be predicted (left bar, see text). However, participants' accuracy in-flight was significantly less than expected based on this theory (middle bar, p<2×10<sup>−6</sup>). In-flight performance was no better than ground-based controls (right bar, p = 0.86), in which the experimental sequence was identical except that the participants did not perform the free fall. The performance scores are averaged over participants, each of whom performed the experiment only once and had a potential performance of 100% (correctly reported both digits), 50%, or 0%. Note that participants did show better-than-chance performance on both the in-flight experiment and ground-based control (chance = 10% accuracy) even though the alternation period had been set to 6 ms below their threshold. This performance gain might be attributable to perceptual learning; it may also be because movement of the chronometer makes it slightly easier to read due to separation of successive frames, and participants sometimes moved the device involuntarily as they hit the net. To ensure parity between the comparisons, we applied a small jerk to control participants' wrists to mimic how the device moved when free-fall participants hit the net. Asterisks represent p<0.05.</p

    Approaches to Predicting Outcomes in Patients with Acute Kidney Injury

    No full text
    <div><p>Despite recognition that Acute Kidney Injury (AKI) leads to substantial increases in morbidity, mortality, and length of stay, accurate prognostication of these clinical events remains difficult. It remains unclear which approaches to variable selection and model building are most robust. We used data from a randomized trial of AKI alerting to develop time-updated prognostic models using stepwise regression compared to more advanced variable selection techniques. We randomly split data into training and validation cohorts. Outcomes of interest were death within 7 days, dialysis within 7 days, and length of stay. Data elements eligible for model-building included lab values, medications and dosages, procedures, and demographics. We assessed model discrimination using the area under the receiver operator characteristic curve and r-squared values. 2241 individuals were available for analysis. Both modeling techniques created viable models with very good discrimination ability, with AUCs exceeding 0.85 for dialysis and 0.8 for death prediction. Model performance was similar across model building strategies, though the strategy employing more advanced variable selection was more parsimonious. Very good to excellent prediction of outcome events is feasible in patients with AKI. More advanced techniques may lead to more parsimonious models, which may facilitate adoption in other settings.</p></div

    Baseline Characteristics at the Onset of AKI<sup>1</sup>.

    No full text
    <p>Baseline Characteristics at the Onset of AKI<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0169305#t001fn002" target="_blank"><sup>1</sup></a>.</p

    Principal Components Analysis.

    No full text
    <p>Colored points reflect individual level data, where individuals are mapped to a coordinate plane based upon 2 principal components derived from laboratory (panel A) and medication (panel B) data. Next to the colored plots, the covariate map appears. Covariates are mapped along the same two principal component vectors, helping to illustrate the correlations among several of the covariates. <b>A)</b> Laboratory covariates as mapped on two principal components. Based on laboratory values, a patient (represented as a dot) can be put anywhere on the coordinate plane. For the outcome of death within 7 days, red dots indicate an individual who died in that time frame, black an individual who did not. For LOS analyses, blue dots indicate shorter lengths of stay, with red dots indicating longer lengths of stay. Clustering of colors along one dimension of the plot suggests a significant relationship between that principal component and the outcome. Next to the patient plots is a plot showing each lab on the same two principal coordinate axes. Labs that are closer together a more correlated (for example, creatinine and BUN). Size of the text indicates strength of association between a given lab and that principal component. <b>B)</b> Medication covariates as mapped on two principal components. Based on medications received, a patient (represented as a dot) can be put anywhere on the coordinate plane. For the outcome of death within 7 days, red dots indicate an individual who died in that time frame, black an individual who did not. For LOS analyses, blue dots indicate shorter lengths of stay, with red dots indicating longer lengths of stay. Clustering of colors along one dimension of the plot suggests a significant relationship between that principal component and the outcome. Next to the patient plots is a plot showing each medication on the same two principal coordinate axes. Medications that are closer together a more correlated (for example, vancomycin and fentanyl). Size of the text indicates strength of association between a given lab and that principal component. Covariates ending in "category" are binary (ie D50 category is a 1 if the patient has received 50% dextrose infusion), whereas those ending in "dose" reflect the actual dose received. Higher resolution figures are available in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0169305#pone.0169305.s002" target="_blank">S2 File</a>.</p

    Receiver-Operator Characteristic curves for death.

    No full text
    <p>Comparing the performance of conventional vs. alternative models in the prediction of death in the validation cohort. Area under the curve for conventional model: 0.80 (0.75–0.84), alternative model 0.80 (0.76–0.85).</p
    corecore