17 research outputs found

    Modeling and Analysis of Mobility Management in Mobile Communication Networks

    Get PDF
    Many strategies have been proposed to reduce the mobility management cost in mobile communication networks. This paper studies the zone-based registration methods that have been adopted by most mobile communication networks. We focus on two special zone-based registration methods, called two-zone registration (2Z) and two-zone registration with implicit registration by outgoing calls (2Zi). We provide a new mathematical model to analyze the exact performance of 2Z and 2Zi. We also present various numerical results, to compare the performance of 2Zi with those of 2Z and one-zone registration (1Z), and show that 2Zi is superior to 2Z as well as 1Z in most cases

    Queueing Network with Moving Servers as a Model of Car Sharing Systems

    No full text
    We consider a queueing network with a finite number of nodes and servers moving between the nodes as a model of car sharing. The arrival process of customers to various nodes is defined by a marked Markovian arrival process. The customer that arrives at a certain node when there is no idle server (car) is lost. Otherwise, he/she is able to start the service. With known probability, which depends on the node and the number of available cars, this customer can balk the service and leave the system. The service time of a customer has an exponential distribution. Location of the server in the network after service completion is random with the known probability distribution. The behaviour of the network is described by a multi-dimensional continuous-time Markov chain. The generator of this chain is derived which allows us to compute the stationary distribution of the network states. The formulas for computing the key performance indicators of the system are given. Numerical results are presented. They characterize the dependence of some performance measures of the network and the nodes on the total number of cars (fleet size of the car sharing system) and correlation in the arrival process

    An Analytical Approach to the Analysis of Guard-Channel-Based Call Admission Control in Wireless Cellular Networks

    No full text
    We develop an analytical approach to the performance analysis and optimization of wireless cellular networks for which different types of calls are prioritized based on a channel reservation scheme. We assume that the channel occupancy time differs for new and handover calls. We obtain simple formulas for calculating quality of service QoS metrics and solve some problems related to finding the optimal values of guard channels as well as present the results of numerical experiments

    Analysis of an MMAP/PH1, PH2/N/∞ queueing system operating in a random environment

    No full text
    A multi-server queueing system with two types of customers and an infinite buffer operating in a random environment as a model of a contact center is investigated. The arrival flow of customers is described by a marked Markovian arrival process. Type 1 customers have a non-preemptive priority over type 2 customers and can leave the buffer due to a lack of service. The service times of different type customers have a phase-type distribution with different parameters. To facilitate the investigation of the system we use a generalized phase-type service time distribution. The criterion of ergodicity for a multi-dimensional Markov chain describing the behavior of the system and the algorithm for computation of its steady-state distribution are outlined. Some key performance measures are calculated. The Laplace-Stieltjes transforms of the sojourn and waiting time distributions of priority and non-priority customers are derived. A numerical example illustrating the importance of taking into account the correlation in the arrival process is presente

    Analysis of a Semi-Open Queuing Network with a State Dependent Marked Markovian Arrival Process, Customers Retrials and Impatience

    No full text
    We consider a queuing network with single-server nodes and heterogeneous customers. The number of customers, which can obtain service simultaneously, is restricted. Customers that cannot be admitted to the network upon arrival make repeated attempts to obtain service. The service time at the nodes is exponentially distributed. After service completion at a node, the serviced customer can transit to another node or leave the network forever. The main features of the model are the mutual dependence of processes of customer arrivals and retrials and the impatience and non-persistence of customers. Dynamics of the network are described by a multidimensional Markov chain with infinite state space, state inhomogeneous behavior and special structure of the infinitesimal generator. The explicit form of the generator is derived. An effective algorithm for computing the stationary distribution of this chain is recommended. The expressions for computation of the key performance measures of the network are given. Numerical results illustrating the importance of the account of the mentioned features of the model are presented. The model can be useful for capacity planning, performance evaluation and optimization of various wireless telecommunication networks, transportation and manufacturing systems
    corecore