50 research outputs found

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition

    Get PDF
    Hedgehog signaling drives oncogenesis in several cancers and strategies targeting this pathway have been developed, most notably through inhibition of Smoothened. However, resistance to Smoothened inhibitors occurs via genetic changes of Smoothened or other downstream Hedgehog components. Here, we overcome these resistance mechanisms by modulating GLI transcription via inhibition of BET bromodomain proteins. We show the BET bromodomain protein, BRD4, regulates GLI transcription downstream of SMO and SUFU and chromatin immunoprecipitation studies reveal BRD4 directly occupies GLI1 and GLI2 promoters, with a substantial decrease in engagement of these sites upon treatment with JQ1, a small molecule inhibitor targeting BRD4. Globally, genes associated with medulloblastoma-specific GLI1 binding sites are downregulated in response to JQ1 treatment, supporting direct regulation of GLI activity by BRD4. Notably, patient- and GEMM-derived Hedgehog-driven tumors (basal cell carcinoma, medulloblastoma and atypical teratoid/rhabdoid tumor) respond to JQ1 even when harboring genetic lesions rendering them resistant to Smoothened antagonists

    In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells

    Get PDF
    A rare set of hematopoietic stem cells (HSC) must undergo a massive expansion to produce mature blood cells. The phenotypic isolation of HSC from mice offers the opportunity to determine directly their proliferation kinetics. We analyzed the proliferation and cell cycle kinetics of long-term self-renewing HSC (LT-HSC) in normal adult mice. At any one time, ≈5% of LT-HSC were in S/G(2)/M phases of the cell cycle and another 20% were in G(1) phase. BrdUrd incorporation was used to determine the rate at which different cohorts of HSC entered the cell cycle over time. About 50% of LT-HSC incorporated BrdUrd by 6 days and >90% incorporated BrdUrd by 30 days. By 6 months, 99% of LT-HSC had incorporated BrdUrd. We calculated that approximately 8% of LT-HSC asynchronously entered the cell cycle per day. Nested reverse transcription–PCR analysis revealed cyclin D2 expression in a high proportion of LT-HSC. Although ≈75% of LT-HSC are quiescent in G(0) at any one time, all HSC are recruited into cycle regularly such that 99% of LT-HSC divide on average every 57 days

    Hydrocephalus Decreases Arterial Spin-Labeled Cerebral Perfusion

    No full text
    BACKGROUND AND PURPOSE: Reduced cerebral perfusion has been observed with elevated intracranial pressure. We hypothesized that arterial spin-labeled CBF can be used as a marker for symptomatic hydrocephalus. MATERIALS AND METHODS: We compared baseline arterial spin-labeled CBF in 19 children (median age, 6.5 years; range, 1–17 years) with new posterior fossa brain tumors and clinical signs of intracranial hypertension with arterial spin-labeled CBF in 16 age-matched controls and 4 patients with posterior fossa tumors without ventriculomegaly or signs of intracranial hypertension. Measurements were recorded in the cerebrum at the vertex, deep gray nuclei, and periventricular white matter and were assessed for a relationship to ventricular size. In 16 symptomatic patients, we compared cerebral perfusion before and after alleviation of hydrocephalus. RESULTS: Patients with uncompensated hydrocephalus had lower arterial spin-labeled CBF than healthy controls for all brain regions interrogated (P \u3c .001). No perfusion difference was seen between asymptomatic patients with posterior fossa tumors and healthy controls (P = 1.000). The median arterial spin-labeled CBF increased after alleviation of obstructive hydrocephalus (P \u3c .002). The distance between the frontal horns inversely correlated with arterial spin-labeled CBF of the cerebrum (P = .036) but not the putamen (P = .156), thalamus (P = .111), or periventricular white matter (P = .121). CONCLUSIONS: Arterial spin-labeled–CBF was reduced in children with uncompensated hydrocephalus and restored after its alleviation. Arterial spin-labeled–CBF perfusion MR imaging may serve a future role in the neurosurgical evaluation of hydrocephalus, as a potential noninvasive method to follow changes of intracranial pressure with time

    Hydrocephalus Decreases Arterial Spin-Labeled Cerebral Perfusion

    No full text
    BACKGROUND AND PURPOSE: Reduced cerebral perfusion has been observed with elevated intracranial pressure. We hypothesized that arterial spin-labeled CBF can be used as a marker for symptomatic hydrocephalus. MATERIALS AND METHODS: We compared baseline arterial spin-labeled CBF in 19 children (median age, 6.5 years; range, 1–17 years) with new posterior fossa brain tumors and clinical signs of intracranial hypertension with arterial spin-labeled CBF in 16 age-matched controls and 4 patients with posterior fossa tumors without ventriculomegaly or signs of intracranial hypertension. Measurements were recorded in the cerebrum at the vertex, deep gray nuclei, and periventricular white matter and were assessed for a relationship to ventricular size. In 16 symptomatic patients, we compared cerebral perfusion before and after alleviation of hydrocephalus. RESULTS: Patients with uncompensated hydrocephalus had lower arterial spin-labeled CBF than healthy controls for all brain regions interrogated (P \u3c .001). No perfusion difference was seen between asymptomatic patients with posterior fossa tumors and healthy controls (P = 1.000). The median arterial spin-labeled CBF increased after alleviation of obstructive hydrocephalus (P \u3c .002). The distance between the frontal horns inversely correlated with arterial spin-labeled CBF of the cerebrum (P = .036) but not the putamen (P = .156), thalamus (P = .111), or periventricular white matter (P = .121). CONCLUSIONS: Arterial spin-labeled–CBF was reduced in children with uncompensated hydrocephalus and restored after its alleviation. Arterial spin-labeled–CBF perfusion MR imaging may serve a future role in the neurosurgical evaluation of hydrocephalus, as a potential noninvasive method to follow changes of intracranial pressure with time

    Time-Dependent Structural Changes of the Dentatothalamic Pathway in Children Treated for Posterior Fossa Tumor

    No full text
    BACKGROUND AND PURPOSE: Injury to the dentatothalamic pathway that originates in the cerebellum has been suggested as a mechanism for neurologic complications in children treated for posterior fossa tumors. We hypothesized that time-dependent changes occur in the dentatothalamic pathway. MATERIALS AND METHODS: Diffusion tensor evaluation was performed in 14 children (median age, 4.1 years; age range, 1–20 years) who underwent serial MR imaging at 3T as part of routine follow-up after posterior fossa tumor resection with or without adjuvant therapy. Tensor metrics were obtained in the acute (≤1 week), subacute (1 to \u3c6 months), and chronic (≥6 months) periods after surgery. We evaluated the following dentatothalamic constituents: bilateral dentate nuclei, cerebellar white matter, and superior cerebellar peduncles. Serial dentate nuclei volumes were also obtained and compared with the patient\u27s baseline. RESULTS: The most significant tensor changes to the superior cerebellar peduncles and cerebellar white matter occurred in the subacute period, regardless of the tumor pathology or therapy regimen, with signs of recovery in the chronic period. However, chronic volume loss and reduced mean diffusivity were observed in the dentate nuclei and did not reverse. This atrophy was associated with radiation therapy and symptoms of ataxia. CONCLUSIONS: Longitudinal diffusion MR imaging in children treated for posterior fossa tumors showed time-dependent tensor changes in components of the dentatothalamic pathway that suggest evolution of structural damage with inflammation and recovery of tissue directionality. However, the dentate nuclei did not show tensor or volumetric recovery, suggesting that the injury may be chronic

    Time-Dependent Structural Changes of the Dentatothalamic Pathway in Children Treated for Posterior Fossa Tumor

    No full text
    BACKGROUND AND PURPOSE: Injury to the dentatothalamic pathway that originates in the cerebellum has been suggested as a mechanism for neurologic complications in children treated for posterior fossa tumors. We hypothesized that time-dependent changes occur in the dentatothalamic pathway. MATERIALS AND METHODS: Diffusion tensor evaluation was performed in 14 children (median age, 4.1 years; age range, 1–20 years) who underwent serial MR imaging at 3T as part of routine follow-up after posterior fossa tumor resection with or without adjuvant therapy. Tensor metrics were obtained in the acute (≤1 week), subacute (1 to \u3c6 months), and chronic (≥6 months) periods after surgery. We evaluated the following dentatothalamic constituents: bilateral dentate nuclei, cerebellar white matter, and superior cerebellar peduncles. Serial dentate nuclei volumes were also obtained and compared with the patient\u27s baseline. RESULTS: The most significant tensor changes to the superior cerebellar peduncles and cerebellar white matter occurred in the subacute period, regardless of the tumor pathology or therapy regimen, with signs of recovery in the chronic period. However, chronic volume loss and reduced mean diffusivity were observed in the dentate nuclei and did not reverse. This atrophy was associated with radiation therapy and symptoms of ataxia. CONCLUSIONS: Longitudinal diffusion MR imaging in children treated for posterior fossa tumors showed time-dependent tensor changes in components of the dentatothalamic pathway that suggest evolution of structural damage with inflammation and recovery of tissue directionality. However, the dentate nuclei did not show tensor or volumetric recovery, suggesting that the injury may be chronic

    Application of Diffusion Tensor Tractography in Pediatric Optic Pathway Glioma

    No full text
    OBJECT: Magnetic resonance imaging is commonly used in diagnosis and surveillance for optic pathway glioma (OPG). The authors investigated the role of diffusion tensor (DT) tractography in assessing the location of visual pathway fibers in the presence of tumor. METHODS: Data in 10 children with OPG were acquired using a 3T MRI generalized autocalibrating parallel acquisitions DT-echo planar imaging sequence (25 isotropic directions with a b value of 1000 seconds/mm(2), slice thickness 3 mm). Fiber tractography was performed, with seed regions placed within the optic chiasm and bilateral nerves on the coronal plane, including the tumor and surrounding normal-appearing tissue. Tracking was performed with a curvature threshold of 30°. RESULTS: For prechiasmatic lesions, fibers either stopped abruptly at the tumor or traversed abnormally dilated nerve segments. Similar findings were seen with chiasmatic lesions, with an additional arrangement in which fibers diverged around the tumor. For each patient, DT tractography provided additional information about visual fiber arrangement in relation to the tumor that was not evident by using conventional MRI methods. Retrospective reconstruction of visual fibers in 1 patient with new postoperative hemianopia revealed an unexpected superior displacement of the optic tract that might have been helpful information had it been applied to preoperative planning or surgical navigation. CONCLUSIONS: Optic pathway DT tractography is feasible in patients with OPG and provides new information about the arrangement of visual fibers in relation to tumors that could be incorporated into surgical navigation for tumor biopsy or debulking procedures
    corecore