4 research outputs found

    Conjugated Polymer Nanoparticles for Bioimaging

    No full text
    During the last decade, conjugated polymers have emerged as an interesting class of fluorescence imaging probes since they generally show high fluorescence brightness, high photostability, fast emission rates, non-blinking behavior and low cytotoxicity. The main concern related to most conjugated polymers is their lack of hydrophilicity and thereby poor bio-availability. This can, however, be overcome by the formulation of conjugated polymer nanoparticles in aqueous medium. This review provides an overview of the different techniques employed for the preparation of conjugated polymer nanoparticles, together with methods to improve their photoluminescence quantum yields. For selective targeting of specific cells, dedicated surface functionalization protocols have been developed, using different functional groups for ligand immobilization. Finally, conjugated polymer nanoparticles have recently also been employed for theranostic applications, wherein the particles are simultaneously used as fluorescent probes and carriers for anti-tumor drugs

    Fluorescent PCDTBT Nanoparticles with Tunable Size for Versatile Bioimaging

    No full text
    Conjugated polymer nanoparticles exhibit very interesting properties for use as bio-imaging agents. In this paper, we report the synthesis of PCDTBT (poly([9-(1’-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl)) nanoparticles of varying sizes using the mini-emulsion and emulsion/solvent evaporation approach. The effect of the size of the particles on the optical properties is investigated using UV-Vis absorption and fluorescence emission spectroscopy. It is shown that PCDTBT nanoparticles have a fluorescence emission maximum around 710 nm, within the biological near-infrared “optical window”. The photoluminescence quantum yield shows a characteristic trend as a function of size. The particles are not cytotoxic and are taken up successfully by human lung cancer carcinoma A549 cells. Irrespective of the size, all particles show excellent fluorescent brightness for bioimaging. The fidelity of the particles as fluorescent probes to study particle dynamics in situ is shown as a proof of concept by performing raster image correlation spectroscopy. Combined, these results show that PCDTBT is an excellent candidate to serve as a fluorescent probe for near-infrared bio-imaging
    corecore